Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.114
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(6): 1198-1211.e19, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200801

RESUMO

It has generally proven challenging to produce functional ß cells in vitro. Here, we describe a previously unidentified protein C receptor positive (Procr+) cell population in adult mouse pancreas through single-cell RNA sequencing (scRNA-seq). The cells reside in islets, do not express differentiation markers, and feature epithelial-to-mesenchymal transition characteristics. By genetic lineage tracing, Procr+ islet cells undergo clonal expansion and generate all four endocrine cell types during adult homeostasis. Sorted Procr+ cells, representing ∼1% of islet cells, can robustly form islet-like organoids when cultured at clonal density. Exponential expansion can be maintained over long periods by serial passaging, while differentiation can be induced at any time point in culture. ß cells dominate in differentiated islet organoids, while α, δ, and PP cells occur at lower frequencies. The organoids are glucose-responsive and insulin-secreting. Upon transplantation in diabetic mice, these organoids reverse disease. These findings demonstrate that the adult mouse pancreatic islet contains a population of Procr+ endocrine progenitors.


Assuntos
Técnicas de Cultura de Células/métodos , Receptor de Proteína C Endotelial/metabolismo , Ilhotas Pancreáticas/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Nus , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Proteína C/metabolismo , Células-Tronco/citologia
2.
Nat Rev Mol Cell Biol ; 22(2): 142-158, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398164

RESUMO

Metabolic homeostasis in mammals is tightly regulated by the complementary actions of insulin and glucagon. The secretion of these hormones from pancreatic ß-cells and α-cells, respectively, is controlled by metabolic, endocrine, and paracrine regulatory mechanisms and is essential for the control of blood levels of glucose. The deregulation of these mechanisms leads to various pathologies, most notably type 2 diabetes, which is driven by the combined lesions of impaired insulin action and a loss of the normal insulin secretion response to glucose. Glucose stimulates insulin secretion from ß-cells in a bi-modal fashion, and new insights about the underlying mechanisms, particularly relating to the second or amplifying phase of this secretory response, have been recently gained. Other recent work highlights the importance of α-cell-produced proglucagon-derived peptides, incretin hormones from the gastrointestinal tract and other dietary components, including certain amino acids and fatty acids, in priming and potentiation of the ß-cell glucose response. These advances provide a new perspective for the understanding of the ß-cell failure that triggers type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Glucose/metabolismo , Homeostase , Secreção de Insulina , Células Secretoras de Insulina/fisiologia , Animais , Humanos , Células Secretoras de Insulina/citologia
3.
Physiol Rev ; 104(4): 1461-1486, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661565

RESUMO

Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet ß-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.


Assuntos
Glucagon , Glucose , Insulina , Neurônios , Animais , Glucagon/metabolismo , Humanos , Insulina/metabolismo , Neurônios/metabolismo , Glucose/metabolismo , Secreção de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo
4.
Cell ; 163(6): 1457-67, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26627735

RESUMO

A variety of signals finely tune insulin secretion by pancreatic ß cells to prevent both hyper-and hypoglycemic states. Here, we show that post-translational regulation of the transcription factors ETV1, ETV4, and ETV5 by the ubiquitin ligase COP1 (also called RFWD2) in ß cells is critical for insulin secretion. Mice lacking COP1 in ß cells developed diabetes due to insulin granule docking defects that were fully rescued by genetic deletion of Etv1, Etv4, and Etv5. Genes regulated by ETV1, ETV4, or ETV5 in the absence of mouse COP1 were enriched in human diabetes-associated genes, suggesting that they also influence human ß-cell pathophysiology. In normal ß cells, ETV4 was stabilized upon membrane depolarization and limited insulin secretion under hyperglycemic conditions. Collectively, our data reveal that ETVs negatively regulate insulin secretion for the maintenance of normoglycemia.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/metabolismo , Exocitose , Deleção de Genes , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Secreção de Insulina , Camundongos , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Cell ; 158(1): 41-53, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995977

RESUMO

A hallmark of type 2 diabetes mellitus (T2DM) is the development of pancreatic ß cell failure, which results in insulinopenia and hyperglycemia. We show that the adipokine adipsin has a beneficial role in maintaining ß cell function. Animals genetically lacking adipsin have glucose intolerance due to insulinopenia; isolated islets from these mice have reduced glucose-stimulated insulin secretion. Replenishment of adipsin to diabetic mice treated hyperglycemia by boosting insulin secretion. We identify C3a, a peptide generated by adipsin, as a potent insulin secretagogue and show that the C3a receptor is required for these beneficial effects of adipsin. C3a acts on islets by augmenting ATP levels, respiration, and cytosolic free Ca(2+). Finally, we demonstrate that T2DM patients with ß cell failure are deficient in adipsin. These findings indicate that the adipsin/C3a pathway connects adipocyte function to ß cell physiology, and manipulation of this molecular switch may serve as a therapy in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Tecido Adiposo/metabolismo , Animais , Complemento C3a/metabolismo , Fator D do Complemento/genética , Fator D do Complemento/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Dieta Hiperlipídica , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Insulina/metabolismo , Secreção de Insulina , Camundongos
6.
Nature ; 624(7992): 621-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049589

RESUMO

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Assuntos
Diabetes Mellitus Tipo 2 , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Ilhotas Pancreáticas , Humanos , Estudos de Casos e Controles , Separação Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Reprodutibilidade dos Testes
7.
Genes Dev ; 35(17-18): 1243-1255, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34385262

RESUMO

Multiple G protein-coupled receptors (GPCRs) are expressed in pancreatic islet cells, but the majority have unknown functions. We observed specific GPCRs localized to primary cilia, a prominent signaling organelle, in pancreatic α and ß cells. Loss of cilia disrupts ß-cell endocrine function, but the molecular drivers are unknown. Using functional expression, we identified multiple GPCRs localized to cilia in mouse and human islet α and ß cells, including FFAR4, PTGER4, ADRB2, KISS1R, and P2RY14. Free fatty acid receptor 4 (FFAR4) and prostaglandin E receptor 4 (PTGER4) agonists stimulate ciliary cAMP signaling and promote glucagon and insulin secretion by α- and ß-cell lines and by mouse and human islets. Transport of GPCRs to primary cilia requires TULP3, whose knockdown in primary human and mouse islets relocalized ciliary FFAR4 and PTGER4 and impaired regulated glucagon or insulin secretion, without affecting ciliary structure. Our findings provide index evidence that regulated hormone secretion by islet α and ß cells is controlled by ciliary GPCRs providing new targets for diabetes.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Glucagon/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética
8.
Genes Dev ; 35(3-4): 234-249, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446570

RESUMO

The physiological functions of many vital tissues and organs continue to mature after birth, but the genetic mechanisms governing this postnatal maturation remain an unsolved mystery. Human pancreatic ß cells produce and secrete insulin in response to physiological cues like glucose, and these hallmark functions improve in the years after birth. This coincides with expression of the transcription factors SIX2 and SIX3, whose functions in native human ß cells remain unknown. Here, we show that shRNA-mediated SIX2 or SIX3 suppression in human pancreatic adult islets impairs insulin secretion. However, transcriptome studies revealed that SIX2 and SIX3 regulate distinct targets. Loss of SIX2 markedly impaired expression of genes governing ß-cell insulin processing and output, glucose sensing, and electrophysiology, while SIX3 loss led to inappropriate expression of genes normally expressed in fetal ß cells, adult α cells, and other non-ß cells. Chromatin accessibility studies identified genes directly regulated by SIX2. Moreover, ß cells from diabetic humans with impaired insulin secretion also had reduced SIX2 transcript levels. Revealing how SIX2 and SIX3 govern functional maturation and maintain developmental fate in native human ß cells should advance ß-cell replacement and other therapeutic strategies for diabetes.


Assuntos
Diferenciação Celular/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Proteínas do Tecido Nervoso/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Secreção de Insulina/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Proteína Homeobox SIX3
9.
Cell ; 153(2): 413-25, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23582329

RESUMO

Here, we demonstrate that the fractalkine (FKN)/CX3CR1 system represents a regulatory mechanism for pancreatic islet ß cell function and insulin secretion. CX3CR1 knockout (KO) mice exhibited a marked defect in glucose and GLP1-stimulated insulin secretion, and this defect was also observed in vitro in isolated islets from CX3CR1 KO mice. In vivo administration of FKN improved glucose tolerance with an increase in insulin secretion. In vitro treatment of islets with FKN increased intracellular Ca(2+) and potentiated insulin secretion in both mouse and human islets. The KO islets exhibited reduced expression of a set of genes necessary for the fully functional, differentiated ß cell state, whereas treatment of wild-type (WT) islets with FKN led to increased expression of these genes. Lastly, expression of FKN in islets was decreased by aging and high-fat diet/obesity, suggesting that decreased FKN/CX3CR1 signaling could be a mechanism underlying ß cell dysfunction in type 2 diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Adulto , Envelhecimento , Animais , Receptor 1 de Quimiocina CX3C , Cadáver , Quimiocina CX3CL1/administração & dosagem , Quimiocina CX3CL1/metabolismo , Dieta Hiperlipídica , Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Receptores de Quimiocinas/genética
10.
Genes Dev ; 34(15-16): 1089-1105, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32616519

RESUMO

The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic ß cells that are perturbed in Clock-/- and Bmal1-/- ß-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant ß cells, including transcripts encoding Cask (calcium/calmodulin-dependent serine protein kinase) and Madd (MAP kinase-activating death domain). Depletion of THRAP3 restores expression of the long isoforms of Cask and Madd, and mimicking exon skipping in these transcripts through antisense oligonucleotide delivery in wild-type islets reduces glucose-stimulated insulin secretion. Finally, we identify shared networks of alternatively spliced exocytic genes from islets of rodent models of diet-induced obesity that significantly overlap with clock mutants. Our results establish a role for pre-mRNA alternative splicing in ß-cell function across the sleep/wake cycle.


Assuntos
Processamento Alternativo , Relógios Circadianos/genética , Exocitose , Glucose/metabolismo , Secreção de Insulina/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/fisiologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/fisiologia , Células Cultivadas , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Homeostase , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/fisiologia , Obesidade/genética , Obesidade/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Fatores de Transcrição/fisiologia
11.
Cell ; 151(1): 123-37, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021220

RESUMO

In Drosophila, the fat body (FB), a functional analog of the vertebrate adipose tissue, is the nutrient sensor that conveys the nutrient status to the insulin-producing cells (IPCs) in the fly brain to release Drosophila insulin-like peptides (Dilps). Dilp secretion in turn regulates energy balance and promotes systemic growth. We identify Unpaired 2 (Upd2), a protein with similarities to type I cytokines, as a secreted factor produced by the FB in the fed state. When upd2 function is perturbed specifically in the FB, it results in a systemic reduction in growth and alters energy metabolism. Upd2 activates JAK/STAT signaling in a population of GABAergic neurons that project onto the IPCs. This activation relieves the inhibitory tone of the GABAergic neurons on the IPCs, resulting in the secretion of Dilps. Strikingly, we find that human Leptin can rescue the upd2 mutant phenotypes, suggesting that Upd2 is the functional homolog of Leptin.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metabolismo Energético , Insulina/metabolismo , Neuropeptídeos/metabolismo , Animais , Metabolismo dos Carboidratos , Corpo Adiposo/metabolismo , Gorduras/metabolismo , Feminino , Humanos , Secreção de Insulina , Janus Quinases/metabolismo , Leptina/metabolismo , Masculino
12.
Proc Natl Acad Sci U S A ; 121(44): e2401218121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39436667

RESUMO

Defective glucose-stimulated insulin secretion (GSIS) and ß-cell senescence are hallmarks in diabetes. The mitochondrial enzyme pyruvate carboxylase (PC) has been shown to promote GSIS and ß-cell proliferation in the clonal ß-cell lines, yet its physiological relevance remains unknown. Here, we provide animal and human data showing a role of PC in protecting ß-cells against senescence and maintaining GSIS under different physiological and pathological conditions. ß-cell-specific deletion of PC impaired GSIS and induced ß-cell senescence in the mouse models under either a standard chow diet or prolonged high-fat diet feeding. Transcriptomic analysis indicated that p53-related senescence and cell cycle arrest are activated in PC-deficient islets. Overexpression of PC inhibited hyperglycemia- and aging-induced p53-related senescence in human and mouse islets as well as INS-1E ß-cells, whereas knockdown of PC provoked senescence. Mechanistically, PC interacted with MDM2 to prevent its degradation via the MDM2 binding motif, which in turn restricts the p53-dependent senescent program in ß-cells. On the contrary, the regulatory effects of PC on GSIS and the tricarboxylic acid (TCA) anaplerotic flux are p53-independent. We illuminate a function of PC in controlling ß-cell senescence through the MDM2-p53 axis.


Assuntos
Senescência Celular , Células Secretoras de Insulina , Piruvato Carboxilase , Proteína Supressora de Tumor p53 , Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Humanos , Mitocôndrias/metabolismo , Glucose/metabolismo , Secreção de Insulina , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética
13.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36939052

RESUMO

Neuropeptides, including insulin, are important regulators of physiological functions of the organisms. Trafficking through the Golgi is crucial for the regulation of secretion of insulin-like peptides. ASNA-1 (TRC40) and ENPL-1 (GRP94) are conserved insulin secretion regulators in Caenorhabditis elegans (and mammals), and mouse Grp94 mutants display type 2 diabetes. ENPL-1/GRP94 binds proinsulin and regulates proinsulin levels in C. elegans and mammalian cells. Here, we have found that ASNA-1 and ENPL-1 cooperate to regulate insulin secretion in worms via a physical interaction that is independent of the insulin-binding site of ENPL-1. The interaction occurs in DAF-28/insulin-expressing neurons and is sensitive to changes in DAF-28 pro-peptide levels. Consistently, ASNA-1 acted in neurons to promote DAF-28/insulin secretion. The chaperone form of ASNA-1 was likely the interaction partner of ENPL-1. Loss of asna-1 disrupted Golgi trafficking pathways. ASNA-1 localization to the Golgi was affected in enpl-1 mutants and ENPL-1 overexpression partially bypassed the ASNA-1 requirement. Taken together, we find a functional interaction between ENPL-1 and ASNA-1 that is necessary to maintain proper insulin secretion in C. elegans and provides insights into how their loss might cause diabetes in mammals.


Assuntos
ATPases Transportadoras de Arsenito , Proteínas de Caenorhabditis elegans , Diabetes Mellitus Tipo 2 , Secreção de Insulina , Chaperonas Moleculares , Animais , Camundongos , ATPases Transportadoras de Arsenito/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Proinsulina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
14.
Nat Chem Biol ; 20(4): 432-442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37872400

RESUMO

Cell-based therapies represent potent enabling technologies in biomedical science. However, current genetic control systems for engineered-cell therapies are predominantly based on the transcription or translation of therapeutic outputs. Here we report a protease-based rapid protein secretion system (PASS) that regulates the secretion of pretranslated proteins retained in the endoplasmic reticulum (ER) owing to an ER-retrieval signal. Upon cleavage by inducible proteases, these proteins are secreted. Three PASS variants (chemPASS, antigenPASS and optoPASS) are developed. With chemPASS, we demonstrate the reversal of hyperglycemia in diabetic mice within minutes via drug-induced insulin secretion. AntigenPASS-equipped cells recognize the tumor antigen and secrete granzyme B and perforin, inducing targeted cell apoptosis. Finally, results from mouse models of diabetes, hypertension and inflammatory pain demonstrate light-induced, optoPASS-mediated therapeutic peptide secretion within minutes, conferring anticipated therapeutic benefits. PASS is a flexible platform for rapid delivery of therapeutic proteins that can facilitate the development and adoption of cell-based precision therapies.


Assuntos
Diabetes Mellitus Experimental , Insulina , Camundongos , Animais , Insulina/metabolismo , Peptídeo Hidrolases/metabolismo , Diabetes Mellitus Experimental/terapia , Endopeptidases/metabolismo , Secreção de Insulina , Apoptose/fisiologia
15.
Immunity ; 47(5): 812-814, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166583

RESUMO

Regulation of pancreatic insulin production is pivotal in the pathophysiology and treatment of diabetes. In this issue of Immunity, Dalmas et al. (2017) describe a type 2 immune circuit where pancreatic interleukin-33 (IL-33) promotes insulin secretion via the activity of islet-associated group 2 innate lymphoid cells (ILC2s).


Assuntos
Imunidade Inata , Interleucina-33 , Secreção de Insulina , Linfócitos , Células Mieloides , Tretinoína
16.
Immunity ; 47(5): 928-942.e7, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166590

RESUMO

Pancreatic-islet inflammation contributes to the failure of ß cell insulin secretion during obesity and type 2 diabetes. However, little is known about the nature and function of resident immune cells in this context or in homeostasis. Here we show that interleukin (IL)-33 was produced by islet mesenchymal cells and enhanced by a diabetes milieu (glucose, IL-1ß, and palmitate). IL-33 promoted ß cell function through islet-resident group 2 innate lymphoid cells (ILC2s) that elicited retinoic acid (RA)-producing capacities in macrophages and dendritic cells via the secretion of IL-13 and colony-stimulating factor 2. In turn, local RA signaled to the ß cells to increase insulin secretion. This IL-33-ILC2 axis was activated after acute ß cell stress but was defective during chronic obesity. Accordingly, IL-33 injections rescued islet function in obese mice. Our findings provide evidence that an immunometabolic crosstalk between islet-derived IL-33, ILC2s, and myeloid cells fosters insulin secretion.


Assuntos
Insulina/metabolismo , Interleucina-33/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Células Mieloides/metabolismo , Tretinoína/metabolismo , Animais , Humanos , Inflamação/imunologia , Secreção de Insulina , Interleucina-33/biossíntese , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vitamina A/fisiologia
17.
PLoS Biol ; 21(6): e3002142, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289842

RESUMO

Rab26 is known to regulate multiple membrane trafficking events, but its role in insulin secretion in pancreatic ß cells remains unclear despite it was first identified in the pancreas. In this study, we generated Rab26-/- mice through CRISPR/Cas9 technique. Surprisingly, insulin levels in the blood of the Rab26-/- mice do not decrease upon glucose stimulation but conversely increase. Deficiency of Rab26 promotes insulin secretion, which was independently verified by Rab26 knockdown in pancreatic insulinoma cells. Conversely, overexpression of Rab26 suppresses insulin secretion in both insulinoma cell lines and isolated mouse islets. Islets overexpressing Rab26, upon transplantation, also failed to restore glucose homeostasis in type 1 diabetic mice. Immunofluorescence microscopy revealed that overexpression of Rab26 results in clustering of insulin granules. GST-pulldown experiments reveal that Rab26 interacts with synaptotagmin-1 (Syt1) through directly binding to its C2A domain, which interfering with the interaction between Syt1 and SNAP25, and consequently inhibiting the exocytosis of newcomer insulin granules revealed by TIRF microscopy. Our results suggest that Rab26 serves as a negative regulator of insulin secretion, via suppressing insulin granule fusion with plasma membrane through sequestering Syt1.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulinoma , Ilhotas Pancreáticas , Neoplasias Pancreáticas , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Exocitose/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Neoplasias Pancreáticas/metabolismo
18.
EMBO Rep ; 25(2): 593-615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228788

RESUMO

Many physiological osteocalcin-regulated functions are affected in adult offspring of mothers experiencing unhealthy pregnancy. Furthermore, osteocalcin signaling during gestation influences cognition and adrenal steroidogenesis in adult mice. Together these observations suggest that osteocalcin may broadly function during pregnancy to determine organismal homeostasis in adult mammals. To test this hypothesis, we analyzed in unchallenged wildtype and Osteocalcin-deficient, newborn and adult mice of various genotypes and origin maintained on different genetic backgrounds, the functions of osteocalcin in the pancreas, liver and testes and their molecular underpinnings. This analysis revealed that providing mothers are Osteocalcin-deficient, Osteocalcin haploinsufficiency in embryos hampers insulin secretion, liver gluconeogenesis, glucose homeostasis, testes steroidogenesis in adult offspring; inhibits cell proliferation in developing pancreatic islets and testes; and disrupts distinct programs of gene expression in these organs and in the brain. This study indicates that osteocalcin exerts dominant functions in most organs it influences. Furthermore, through their synergistic regulation of multiple physiological functions, osteocalcin of maternal and embryonic origins contributes to the establishment and maintenance of organismal homeostasis in newborn and adult offspring.


Assuntos
Glicemia , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Gravidez , Glicemia/análise , Glicemia/metabolismo , Homeostase , Insulina/metabolismo , Secreção de Insulina , Mamíferos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
19.
Nature ; 586(7830): 606-611, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814902

RESUMO

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Evasão da Resposta Imune , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/imunologia , Organoides/citologia , Organoides/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Epigênese Genética , Feminino , Glucose/metabolismo , Rejeição de Enxerto , Xenoenxertos , Homeostase , Humanos , Tolerância Imunológica , Secreção de Insulina , Transplante das Ilhotas Pancreáticas , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/transplante , Linfócitos T/citologia , Linfócitos T/imunologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt4/metabolismo , Proteína Wnt4/farmacologia
20.
Nucleic Acids Res ; 52(11): 6298-6316, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38682582

RESUMO

Senescent cells can influence the function of tissues in which they reside, and their propensity for disease. A portion of adult human pancreatic beta cells express the senescence marker p16, yet it is unclear whether they are in a senescent state, and how this affects insulin secretion. We analyzed single-cell transcriptome datasets of adult human beta cells, and found that p16-positive cells express senescence gene signatures, as well as elevated levels of beta-cell maturation genes, consistent with enhanced functionality. Senescent human beta-like cells in culture undergo chromatin reorganization that leads to activation of enhancers regulating functional maturation genes and acquisition of glucose-stimulated insulin secretion capacity. Strikingly, Interferon-stimulated genes are elevated in senescent human beta cells, but genes encoding senescence-associated secretory phenotype (SASP) cytokines are not. Senescent beta cells in culture and in human tissue show elevated levels of cytoplasmic DNA, contributing to their increased interferon responsiveness. Human beta-cell senescence thus involves chromatin-driven upregulation of a functional-maturation program, and increased responsiveness of interferon-stimulated genes, changes that could increase both insulin secretion and immune reactivity.


Assuntos
Senescência Celular , Montagem e Desmontagem da Cromatina , Células Secretoras de Insulina , Interferons , Humanos , Células Secretoras de Insulina/metabolismo , Senescência Celular/genética , Interferons/metabolismo , Interferons/genética , Secreção de Insulina , Insulina/metabolismo , Cromatina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Células Cultivadas , Fenótipo Secretor Associado à Senescência/genética , Transcriptoma , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA