Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709307

RESUMO

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Ácido Láctico , Lipopolissacarídeos , Transportadores de Ácidos Monocarboxílicos , Fibrose Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inibidores , Camundongos , Ácido Láctico/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
2.
Prostate ; 84(9): 814-822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558458

RESUMO

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Assuntos
Antagonistas de Androgênios , Benzamidas , Transportadores de Ácidos Monocarboxílicos , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Simportadores , Masculino , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/genética , Linhagem Celular Tumoral , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Nitrilas/farmacologia , Simportadores/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Benzamidas/farmacologia
3.
Bioorg Chem ; 147: 107385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663255

RESUMO

Chronic liver diseases caused by hepatitis B virus (HBV) are the accepted main cause leading to liver cirrhosis, hepatic fibrosis, and hepatic carcinoma. Sodium taurocholate cotransporting polypeptide (NTCP), a specific membrane receptor of hepatocytes for triggering HBV infection, is a promising target against HBV entry. In this study, pentacyclic triterpenoids (PTs) including glycyrrhetinic acid (GA), oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) were modified via molecular hybridization with podophyllotoxin respectively, and resulted in thirty-two novel conjugates. The anti-HBV activities of conjugates were evaluated in HepG2.2.15 cells. The results showed that 66% of the conjugates exhibited lower toxicity to the host cells and had significant inhibitory effects on the two HBV antigens, especially HBsAg. Notably, the compounds BA-PPT1, BA-PPT3, BA-PPT4, and UA-PPT3 not only inhibited the secretion of HBsAg but also suppressed HBV DNA replication. A significant difference in the binding of active conjugates to NTCP compared to the HBV PreS1 antigen was observed by SPR assays. The mechanism of action was found to be the competitive binding of these compounds to the NTCP 157-165 epitopes, blocking HBV entry into host cells. Molecular docking results indicated that BA-PPT3 interacted with the amino acid residues of the target protein mainly through π-cation, hydrogen bond and hydrophobic interaction, suggesting its potential as a promising HBV entry inhibitor targeting the NTCP receptor.


Assuntos
Antivirais , Vírus da Hepatite B , Transportadores de Ânions Orgânicos Dependentes de Sódio , Triterpenos Pentacíclicos , Simportadores , Internalização do Vírus , Humanos , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Simportadores/antagonistas & inibidores , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Internalização do Vírus/efeitos dos fármacos , Células Hep G2 , Triterpenos Pentacíclicos/farmacologia , Triterpenos Pentacíclicos/síntese química , Triterpenos Pentacíclicos/química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/síntese química , Antígenos de Superfície da Hepatite B/metabolismo
4.
Expert Opin Investig Drugs ; 33(5): 485-495, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613839

RESUMO

INTRODUCTION: Pruritus is common and often undertreated in patients with primary biliary cholangitis (PBC). Existing treatments largely have an aging and low-quality evidence base, and studies included only small numbers of patients. More recent data that has added to our understanding of pruritus treatments has often come from clinical trials where itching was a secondary outcome measure in a trial designed primarily to assess disease-modifying agents. This area represents an unmet clinical need in the management of PBC. AREAS COVERED: In this manuscript, we first summarize the proposed mechanisms for PBC-related pruritus and the current treatment paradigm. We then present an appraisal of the existing pre-clinical and clinical evidence for the use of ileal bile acid transporter inhibitors (IBATis) for this indication in PBC patients. EXPERT OPINION: Evidence for the efficacy of IBATis is promising but limited by the currently available volume of data. Furthermore, larger clinical trials with long-term data on efficacy, safety and tolerability are needed to confirm the role of using IBATis in clinical practice and their place on the itch treatment ladder. Additional focus should also be given to exploring the disease-modifying potential of IBATis in PBC.


Assuntos
Desenvolvimento de Medicamentos , Cirrose Hepática Biliar , Transportadores de Ânions Orgânicos Dependentes de Sódio , Prurido , Humanos , Prurido/tratamento farmacológico , Animais , Cirrose Hepática Biliar/tratamento farmacológico , Cirrose Hepática Biliar/fisiopatologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores
5.
Toxicol In Vitro ; 96: 105770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38151217

RESUMO

Early neurodevelopmental processes are strictly dependent on spatial and temporally modulated of thyroid hormone (TH) availability and action. Thyroid hormone transmembrane transporters (THTMT) are critical for regulating the local concentrations of TH, namely thyroxine (T4) and 3,5,3'-tri-iodothyronine (T3), in the brain. Monocarboxylate transporter 8 (MCT8) is one of the most prominent THTMT. Genetically induced deficiencies in expression, function or localization of MCT8 are associated with irreversible and severe neurodevelopmental adversities. Due to the importance of MCT8 in brain development, studies addressing chemical interferences of MCT8 facilitated T3 uptake are a crucial step to identify TH system disrupting chemicals with this specific mode of action. Recently a non-radioactive in vitro assay has been developed to rapidly screen for endocrine disrupting chemicals (EDCs) acting upon MCT8 mediated transport. This study explored the use of an UV-light digestion step as an alternative for the original ammonium persulfate (APS) digestion step. The non-radioactive TH uptake assay, with the incorporated UV-light digestion step of TH, was then used to screen a set of 31 reference chemicals and environmentally relevant substances to detect inhibition of MCT8-depending T3 uptake. This alternative assay identified three novel MCT8 inhibitors: methylmercury, bisphenol-AF and bisphenol-Z and confirmed previously known MCT8 inhibitors.


Assuntos
Disruptores Endócrinos , Transportadores de Ácidos Monocarboxílicos , Simportadores , Transporte Biológico/efeitos dos fármacos , Disruptores Endócrinos/isolamento & purificação , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Tiroxina , Humanos , Animais , Cães , Células Madin Darby de Rim Canino , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Testes de Toxicidade
6.
Sci Rep ; 14(1): 10689, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724641

RESUMO

Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before and after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.


Assuntos
Perda Auditiva Provocada por Ruído , Cotransportadores de K e Cl- , Simportadores , Ácido gama-Aminobutírico , Animais , Simportadores/metabolismo , Simportadores/antagonistas & inibidores , Cobaias , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Provocada por Ruído/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Masculino , Núcleo Coclear/metabolismo , Piridazinas/farmacologia , Neurônios/metabolismo
7.
J Med Chem ; 67(8): 6687-6704, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38574002

RESUMO

In the face of escalating metabolic disease prevalence, largely driven by modern lifestyle factors, this study addresses the critical need for novel therapeutic approaches. We have identified the sodium-coupled citrate transporter (NaCT or SLC13A5) as a target for intervention. Utilizing rational drug design, we developed a new class of SLC13A5 inhibitors, anchored by the hydroxysuccinic acid scaffold, refining the structure of PF-06649298. Among these, LBA-3 emerged as a standout compound, exhibiting remarkable potency with an IC50 value of 67 nM, significantly improving upon PF-06649298. In vitro assays demonstrated LBA-3's efficacy in reducing triglyceride levels in OPA-induced HepG2 cells. Moreover, LBA-3 displayed superior pharmacokinetic properties and effectively lowered triglyceride and total cholesterol levels in diverse mouse models (PCN-stimulated and starvation-induced), without detectable toxicity. These findings not only spotlight LBA-3 as a promising candidate for hyperlipidemia treatment but also exemplify the potential of targeted molecular design in advancing metabolic disorder therapeutics.


Assuntos
Hiperlipidemias , Humanos , Animais , Camundongos , Hiperlipidemias/tratamento farmacológico , Células Hep G2 , Relação Estrutura-Atividade , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Masculino , Hipolipemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/uso terapêutico , Hipolipemiantes/farmacocinética , Descoberta de Drogas , Camundongos Endogâmicos C57BL , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Desenho de Fármacos
8.
J Control Release ; 372: 885-900, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971425

RESUMO

Statins are widely used to treat hyperlipidemia; however, their mechanism-inhibiting cholesterol production without promoting its utilization-causes problems, such as inducing diabetes. In our research, we develop, for the first time, a chemically engineered statin conjugate that not only inhibits cholesterol production but also enhances its consumption through its multifunctional properties. The novel rosuvastatin (RO) and ursodeoxycholic acid (UDCA) conjugate (ROUA) is designed to bind to and inhibit the core of the apical sodium-dependent bile acid transporter (ASBT), effectively blocking ASBT's function in the small intestine, maintaining the effect of rosuvastatin. Consequently, ROUA not only preserves the cholesterol-lowering function of statins but also prevents the reabsorption of bile acids, thereby increasing cholesterol consumption. Additionally, ROUA's ability to self-assemble into nanoparticles in saline-attributable to its multiple hydroxyl groups and hydrophobic nature-suggests its potential for a prolonged presence in the body. The oral administration of ROUA nanoparticles in animal models using a high-fat or high-fat/high-fructose diet shows remarkable therapeutic efficacy in fatty liver, with low systemic toxicity. This innovative self-assembling multifunctional molecule design approach, which boosts a variety of therapeutic effects while minimizing toxicity, offers a significant contribution to the advancement of drug development.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Nanopartículas , Transportadores de Ânions Orgânicos Dependentes de Sódio , Rosuvastatina Cálcica , Simportadores , Animais , Nanopartículas/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/metabolismo , Masculino , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Rosuvastatina Cálcica/administração & dosagem , Humanos , Camundongos Endogâmicos C57BL , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/química , Colesterol/química , Ratos Sprague-Dawley , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA