Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 903
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mutagenesis ; 39(1): 32-42, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37877816

RESUMO

The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.


Assuntos
Alcaloides , Sophora , Matrinas , Reprodutibilidade dos Testes , Alcaloides/toxicidade , Alcaloides/análise , Quinolizinas/toxicidade , Quinolizinas/análise , Mutação
2.
Curr Microbiol ; 81(2): 60, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206520

RESUMO

A novel endophytic bacterium, designated strain BT6-1-3T, was isolated from the root nodules of a leguminous shrub named Sophora davidii (Franch.) Skeels, found growing wild in Yan'an, Shaanxi Province, China. Cells were Gram-staining-negative, non-motile, catalase-positive, oxidase-positive, and did not produce H2S. Strain BT6-1-3T grew at 15-40 °C (optimum 30 °C), at pH 6.0-10.0 (optimum pH 9.0), and with 0-1% (w/v) NaCl (optimum 0.5%). The quinone system was menaquinone 6. The major fatty acids present in BT6-1-3T were iso-C11:0, iso-C15:0, and C16:0. The G+C content of genomic DNA was 39.4 mol% by whole genome sequencing. According to the analysis of 16S rRNA gene sequence, the closest relative was Kaistella montana WG4 (nucleotide identity was 97.6%). The genome of strain BT6-1-3T was sequenced, and the genome similarity was calculated using average nucleotide identity and genome-to-genome distance analysis with the genomes of other strains of Kaistella. Both strongly supported that the strain BT6-1-3T belonged to the genus Kaistella as a representative of a new species. Based on phylogenetic analysis, chemotaxonomic data, and physiological and biochemical characteristics, strain BT6-1-3T represents a new species of the genus Kaistella and is named as Kaistella yananensis sp. nov. Type strain is BT6-1-3T (= NBRC 115452T = CGMCC 1.60032T).


Assuntos
Sophora , Filogenia , RNA Ribossômico 16S/genética , Bactérias , Ácidos Indolacéticos , Nucleotídeos
3.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358770

RESUMO

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Assuntos
Alcaloides , Flavanonas , Sophora , Camundongos , Animais , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacologia , Flavanonas/química , Prenilação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas , Quimiocinas
4.
Phytother Res ; 38(7): 3337-3351, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634416

RESUMO

The discovery of alternative medicines with fewer adverse effects is urgently needed for rheumatoid arthritis (RA). Sophoridine (SR), the naturally occurring quinolizidine alkaloid isolated from the leguminous sophora species, has been demonstrated to possess a wide range of pharmacological activities. However, the effect of SR on RA remains unknown. In this study, the collagen-induced arthritis (CIA) rat model and tumor necrosis factor alpha (TNFα)-induced fibroblast-like synoviocytes (FLSs) were utilized to investigate the inhibitory effect of SR on RA. The anti-arthritic effect of SR was evaluated using the CIA rat model in vivo and TNFα-stimulated FLSs in vitro. Mechanistically, potential therapeutic targets and pathways of SR in RA were analyzed through drug target databases and disease databases, and validation was carried out through immunofluorescence, immunohistochemistry, and Western blot. The in vivo results revealed that SR treatment effectively ameliorated synovial inflammation and bone erosion in rats with CIA. The in vitro studies showed that SR could significantly suppress the proliferation and migration in TNFα-induced arthritic FLSs. Mechanistically, SR treatment efficiently inhibited the activation of MAPKs (JNK and p38) and NF-κB pathways in TNFα-induced arthritic FLSs. These findings were further substantiated by Immunohistochemistry results in the CIA rat. SR exerts an anti-arthritic effect in CIA rats through inhibition of the pathogenic characteristic of arthritic FLSs via suppressing NF-κB and MAPKs (JNK and p38) signaling pathways. SR may have a great potential for development as a novel therapeutic agent for RA treatment.


Assuntos
Alcaloides , Artrite Experimental , Artrite Reumatoide , Fibroblastos , Matrinas , NF-kappa B , Quinolizinas , Sinoviócitos , Fator de Necrose Tumoral alfa , Animais , Sinoviócitos/efeitos dos fármacos , Artrite Experimental/tratamento farmacológico , Alcaloides/farmacologia , Ratos , Quinolizinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Fibroblastos/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Masculino , Proliferação de Células/efeitos dos fármacos , Sophora/química , Ratos Sprague-Dawley
5.
Chem Biodivers ; 21(6): e202400399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634752

RESUMO

Four undescribed prenylated flavonoids, sophoratones A-D (1-4), and 17 known flavonoids, were obtained from the aerial parts of Sophora tonkinensis. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, and ECD calculations. Meanwhile, the ability of these compounds to inhibit the release of nitric oxide (NO) by a lipopolysaccharide induced mouse in RAW 264.7 cells was assayed. The results indicated that some compounds exhibited clear inhibitory effects, with IC50 ranging from 19.91±1.08 to 35.72±2.92 µM. These results suggest that prenylated flavonoids from the aerial parts of S. tonkinensis could potentially be used as a latent source of anti-inflammatory agents.


Assuntos
Flavonoides , Lipopolissacarídeos , Óxido Nítrico , Componentes Aéreos da Planta , Sophora , Sophora/química , Animais , Camundongos , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Células RAW 264.7 , Componentes Aéreos da Planta/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico/biossíntese , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Estrutura Molecular , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
6.
J Asian Nat Prod Res ; 26(3): 302-312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37312516

RESUMO

Three new quinolizidine alkaloids (1 - 3), including one new naturally isoflavone and cytisine polymer (3), along with 6 known ones were isolated from the ethanol extract of Sophora tonkinensis Gagnep. Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, HRESIMS, 1D and 2D NMR), combined with ECD calculations. The antifungal activity against Phytophythora capsica, Botrytis cinerea, Gibberella zeae, and Alternaria alternata of the compounds was evaluated in a mycelial inhibition assay. Biological tests indicated that compound 3 exhibited strong antifungal activity against P. capsica with EC50 values of 17.7 µg/ml.


Assuntos
Alcaloides , Sophora , Alcaloides Quinolizidínicos , Sophora/química , Antifúngicos/farmacologia , Raízes de Plantas/química , Alcaloides/química , Estrutura Molecular
7.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892361

RESUMO

Sophora alopecuroides has important uses in medicine, wind breaking, and sand fixation. The CHY-zinc-finger and RING-finger (CHYR) proteins are crucial for plant growth, development, and environmental adaptation; however, genetic data regarding the CHYR family remain scarce. We aimed to investigate the CHYR gene family in S. alopecuroides and its response to abiotic stress, and identified 18 new SaCHYR genes from S. alopecuroides whole-genome data, categorized into 3 subclasses through a phylogenetic analysis. Gene structure, protein domains, and conserved motifs analyses revealed an exon-intron structure and conserved domain similarities. A chromosome localization analysis showed distribution across 12 chromosomes. A promoter analysis revealed abiotic stress-, light-, and hormone-responsive elements. An RNA-sequencing expression pattern analysis revealed positive responses of SaCHYR genes to salt, alkali, and drought stress. SaCHYR4 overexpression considerably enhanced alkali and drought tolerance in Arabidopsis thaliana. These findings shed light on SaCHYR's function and the resistance mechanisms of S. alopecuroides, presenting new genetic resources for crop resistance breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Sophora , Estresse Fisiológico , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sophora/genética , Arabidopsis/genética , Genoma de Planta , Secas , Cromossomos de Plantas/genética
8.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257261

RESUMO

Chemical investigation of Penicillium sp. GDGJ-N37, a Sophora tonkinensis-associated fungus, yielded two new azaphilone derivatives, N-isoamylsclerotiorinamine (1) and 7-methoxyl-N-isoamylsclerotiorinamine (2), and four known azaphilones (3-6), together with two new chromone derivatives, penithochromones X and Y (7 and 8). Their structures were elucidated based on spectroscopic data, CD spectrum, and semi-synthesis. Sclerotioramine (3) showed significant antibacterial activities against B. subtilis and S. dysentery, and it also showed most potent anti-plant pathogenic fungi activities against P. theae, C. miyabeanus, and E. turcicum.


Assuntos
Anti-Infecciosos , Penicillium , Sophora , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Fungos
9.
BMC Genomics ; 24(1): 475, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608245

RESUMO

The genus Sophora (Fabaceae) includes medicinal plants that have been used in East Asian countries since antiquity. Sophora flavescens is a perennial herb indigenous to China, India, Japan, Korea, and Russia. Its dried roots have antioxidant, anti-inflammatory, antibacterial, apoptosis-modulating, and antitumor efficacy. The congeneric S. koreensis is endemic to Korea and its genome is less than half the size of that of S. flavescens. Nevertheless, this discrepancy can be used to assemble and validate the S. flavescens genome. A comparative genomic study of the two genomes can disclose the recent evolutionary divergence of the polymorphic phenotypic profiles of these species. Here, we used the PacBio sequencing platform to sequence and assemble the S. koreensis and S. flavescens genomes. We inferred that it was mainly small-scale duplication that occurred in S. flavescens. A KEGG analysis revealed pathways that might regulate the pharmacologically important secondary metabolites in S. flavescens and S. koreensis. The genome assemblies of Sophora spp. could be used in comparative genomics and data mining for various plant natural products.


Assuntos
Alcaloides , Antineoplásicos , Sophora , Sophora/genética , Duplicação Gênica , Genômica , Sophora flavescens
10.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33876189

RESUMO

Targeting tumor microenvironment (TME), such as immune checkpoint blockade (ICB), has achieved increased overall response rates in many advanced cancers, such as non-small cell lung cancer (NSCLC), however, only in a fraction of patients. To improve the overall and durable response rates, combining other therapeutics, such as natural products, with ICB therapy is under investigation. Unfortunately, due to the lack of systematic methods to characterize the relationship between TME and ICB, development of rational immune-combination therapy is a critical challenge. Here, we proposed a systems pharmacology strategy to identify resistance regulators of PD-1/PD-L1 blockade and develop its combinatorial drug by integrating multidimensional omics and pharmacological methods. First, a high-resolution TME cell atlas was inferred from bulk sequencing data by referring to a high-resolution single-cell data and was used to predict potential resistance regulators of PD-1/PD-L1 blockade through TME stratification analysis. Second, to explore the drug targeting the resistance regulator, we carried out the large-scale target fishing and the network analysis between multi-target drug and the resistance regulator. Finally, we predicted and verified that oxymatrine significantly enhances the infiltration of CD8+ T cells into TME and is a powerful combination agent to enhance the therapeutic effect of anti-PD-L1 in a mouse model of lung adenocarcinoma. Overall, the systems pharmacology strategy offers a paradigm to identify combinatorial drugs for ICB therapy with a systems biology perspective of drug-target-pathway-TME phenotype-ICB combination.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quimioterapia Combinada , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Sophora/química , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
11.
Mol Phylogenet Evol ; 181: 107713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693532

RESUMO

The papilionoid legume genus Sophora (Fabaceae) exhibits a worldwide distribution, but a phylogenetic framework to understand the evolution of this group is lacking to date. Previous studies have demonstrated that Sophora is not monophyletic and might include Ammodendron, Ammothamnus, and Echinosophora, but the relationships among these four genera (defined as Sophora s.l.) are unclear. Here we used a nuclear DNA dataset (ETS, ITS, SQD1) and a plastid DNA dataset (matK, rbcL, rpl32-trnL, trnL-F) of 654 accession sequences to reconstruct the phylogenetic relationships, estimate the divergence times and ancestral range of Sophora s.l., and infer the evolution of chromosome number and morphological characteristics. Our major aim was to reconstruct phylogenetic relationships to test monophyly and elucidate relationships within the genus. Our results indicated that Ammodendron, Ammothamnus, and Echinosophora are embedded within Sophora s.s. and that nine well-supported clades can be recognized within comprise Sophora s.l. Ancestral character state estimation revealed that the most recent common ancestor of Sophora s.l. was a deciduous shrub that lacks rhizome spines and has unwinged legumes. Divergence times estimation and ancestral area reconstruction showed that Sophora s.l. originated in Central Asia and/or adjacent Southeast China in the early Oligocene (ca. 31 Mya) and dispersed from these regions into East and South Asia's adjacent areas and North America via the Bering land bridge. The analyses also supported a South American origin for S. sect. Edwardsia, which experienced rapid radiation with its major lineages diversifying over a relatively narrow timescale (8 Mya).


Assuntos
Fabaceae , Sophora , Filogenia , Fabaceae/genética , Sophora/genética , América do Norte , China , DNA de Plantas/genética , Teorema de Bayes
12.
Nanomedicine ; 47: 102625, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334896

RESUMO

Spinal cord injury (SCI) is a severe traumatic disease because of its complications and multi-organ dysfunction. After the injury, the disruption of microenvironment homeostasis in the lesion demolishes the surrounding healthy tissues via various pathways. The microenvironment regulation is beneficial for neural and functional recovery. Sustained release, cellular uptake, and long-term retention of therapeutic molecules at the impaired sites are important for continuous microenvironment improvement. In our study, a local-implantation system was constructed for SCI treatment by encapsulating exosomes derived from Flos Sophorae Immaturus (so-exos) in a polydopamine-modified hydrogel (pDA-Gel). So-exos are used as nanoscale natural vehicles of rutin, a flavonoid phytochemical that is effective in microenvironment improvement and nerve regeneration. Our study showed that the pDA-Gel-encapsulated so-exos allowed rapid improvement of the impaired motor function and alleviation of urination dysfunction by modulating the spinal inflammatory and oxidative conditions, thus illustrating a potential SCI treatment through a combinational delivery of so-exos.


Assuntos
Sophora , Regeneração da Medula Espinal , Antioxidantes/farmacologia , Hidrogéis , Estresse Oxidativo
13.
Biomed Chromatogr ; 37(3): e5557, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36453605

RESUMO

Based on the biolabel research pattern, omics and network pharmacology were used for exploring the neuroprotection of Sophora tonkinensis (ST) in the treatment of brain diseases. Multi-omics were applied to investigate biolabels for ST intervention in brain tissue. Based on biolabels, the therapeutic potential, mechanism and material basis of ST for treating brain diseases were topologically analyzed by network pharmacology. A Parkinson's disease (PD) mouse model was used to validate biolabel analysis results. Four proteins and three metabolites were involved in two key pathways (alanine, aspartate and glutamate metabolism and arginine biosynthesis) and considered as biolabels. Network pharmacology showed that ST has the potential to treat some brain diseases, especially PD. Eight compounds (including caffeic acid, gallic acid and cinnamic acid) may serve as the material basis of ST treating brain diseases via the mediation of three biolabels. In the PD model, ST and its active compounds (caffeic acid and gallic acid) may protect dopaminergic neurons (maximum recovery rate for dopamine, 49.5%) from oxidative stress (E3 ubiquitin-protein ligase parkin, reactive oxygen species, nitric oxide, etc.) and neuroexcitatory toxicity (glutamate dehydrogenase, glutamine, glutamic acid, etc.). These findings indicated that omics and network pharmacology may contribute to the achievement of the objectives of this study based on the biolabel research pattern.


Assuntos
Doença de Parkinson , Sophora , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Neuroproteção , Farmacologia em Rede , Estresse Oxidativo
14.
Phytother Res ; 37(2): 592-610, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36180975

RESUMO

Sorafenib (SF), a multi-kinase inhibitor, is the first FDA-approved systemic chemotherapy drug for advanced hepatocellular carcinoma (HCC). However, its clinical application is limited by severe toxicity and side effects associated with high applied doses. Sophora alopecuroides L. is traditionally used as Chinese herbal medicine for treating gastrointestinal diseases, bacillary dysentery, viral hepatitis, and other diseases, and exerts an important role in anti-tumor. Hence, we investigated the synergistic actions of seventeen flavonoids from this herb combined with SF against HCC cell lines and their primary mechanism. In the experiment, most compounds were found to prominently enhance the inhibitory effects of SF on HCC cells than their alone treatment. Among them, three compounds leachianone A (1), sophoraflavanone G (3), and trifolirhizin (17) exhibited significantly synergistic anticancer activities against MHCC97H cells at low concentration with IC50 of SF reduced by 5.8-fold, 3.6-fold, and 3.5-fold corresponding their CI values of 0.49, 0.66, and 0.46 respectively. Importantly, compounds 3 or 17 combined with SF could synergistically induce MHCC97H cells apoptosis via the endogenously mitochondrial-mediated apoptotic pathway, involving higher Bax/Bcl-2 expressions with the activation of caspase-9 and -3, and arrest the cell cycle in G1 phases. Strikingly, this synergistic effect was also closely related to the co-suppression of ERK and AKT signaling pathways. Furthermore, compound 3 significantly enhanced the suppression of SF on tumor growth in the HepG2 xenograft model, with a 79.3% inhibition ratio at high concentration, without systemic toxicity, compared to either agent alone. These results demonstrate that the combination treatment of flavonoid 3 and SF at low doses exert synergistic anticancer effects on HCC cells in vitro and in vivo.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Sophora , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Compostos de Fenilureia/farmacologia
15.
Pestic Biochem Physiol ; 189: 105308, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549815

RESUMO

Pests cause substantial damage to human environments; therefore, studying insecticidal mechanisms is crucial for improving pest control. However, the use of chemical pesticides can cause irreversible secondary damage. In this study, we used network pharmacology to investigate the effect of Sophora flavescens Alt., as a biological pest control agent, on glucose-6-phosphate 1-dehydrogenase, thymidylate synthase, and a translocation protein in aphids. The stability and reliability of target proteins was analyzed using molecular docking and molecular dynamic simulations. Enzyme activity assays validated the feasibility of network pharmacology to obtain actionable targets. We used interdisciplinary integration to study pest control and network pharmacology to identify how Sophora flavescens Alt. resists aphid attacks. The results show that the use of network pharmacology can increase the accuracy and specificity of our predictions for the molecules targeted by insecticides. This approach will facilitate improved, environmentally friendly pest control development in the future.


Assuntos
Afídeos , Sophora , Animais , Humanos , Sophora flavescens , Simulação de Acoplamento Molecular , Farmacologia em Rede , Reprodutibilidade dos Testes , Sophora/química
16.
J Asian Nat Prod Res ; 25(5): 411-421, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35880466

RESUMO

Three previously undescribed aromatic diglycosides (1, 5, and 8) and six known analogs (2-4, 6, 7, and 9) were isolated from the roots and rhizomes of Sophora tonkinensis Gagnep. Their structures were elucidated by detailed spectroscopic analysis. The absolute configuration of compound 8 was determined by comparing the experimental and TDDFT calculated ECD spectra of 8 and aglycone 8a. Furthermore, a multistep conformer filtering procedure for TDDFT calculation of flexible glycoside was proposed, which afforded high accuracy with acceptable computing cost in determining the absolute configuration of glycosides using quantum calculated ECD.


Assuntos
Glicosídeos , Sophora , Sophora/química , Rizoma/química , Raízes de Plantas/química
17.
J Asian Nat Prod Res ; 25(2): 163-170, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35675145

RESUMO

Two new isoflavones (1 and 2), as well as eight known ones were isolated from the roots of Sophora tonkinensis Gagnep. Compound 1 represents an unprecedented polymerization pattern constructed by isoflavone and cytisine. Their structures were elucidated by comprehensive spectroscopic data analysis, combined with ECD calculations. Compound 1 displayed significant anti-tobacco mosaic virus (TMV) activity compared with the positive control ningnanmycin. Moreover, compound 6 exhibited potent α-glucosidase inhibitory activity with IC50 value of 47.4 mg/L.


Assuntos
Alcaloides , Isoflavonas , Sophora , Isoflavonas/farmacologia , Sophora/química , Raízes de Plantas/química , Alcaloides/química , Quinolizinas/análise
18.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903293

RESUMO

The phytochemical investigation of the roots of the traditional Chinese medicinal plant Sophora flavescens led to the isolation of two novel prenylflavonoids with an unusual cyclohexyl substituent instead of the common aromatic ring B, named 4',4'-dimethoxy-sophvein (17) and sophvein-4'-one (18), and 34 known compounds (1-16, 19-36). The structures of these chemical compounds were determined by spectroscopic techniques, including 1D-, 2D-NMR, and HRESIMS data. Furthermore, evaluations of nitric oxide (NO) production inhibitory activity against lipopolysaccharide (LPS)-treated RAW264.7 cells indicated that some compounds exhibited obvious inhibition effects, with IC50 ranged from 4.6 ± 1.1 to 14.4 ± 0.4 µM. Moreover, additional research demonstrated that some compounds inhibited the growth of HepG2 cells, with an IC50 ranging from 0.46 ± 0.1 to 48.6 ± 0.8 µM. These results suggest that flavonoid derivatives from the roots of S. flavescens can be used as a latent source of antiproliferative or anti-inflammatory agents.


Assuntos
Flavonoides , Sophora , Flavonoides/química , Sophora flavescens , Sophora/química , Anti-Inflamatórios/farmacologia , Raízes de Plantas/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética
19.
J Sci Food Agric ; 103(1): 164-175, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35837792

RESUMO

BACKGROUND: Sophora alopecuroides L. is a leguminous plant commonly found in northwest China. In Xinjiang, the fresh herb of S. alopecuroides is often applied as a green fertilizer to the rhizosphere of melon (Cucumis melo) plants at the end of their flowering period, to improve the taste of the fruits. However, the effects of S. alopecuroides-based fertilizers on the microbial community structure of soil and crop-root systems are unclear. In order to study the sweetening mechanism of the S. alopecuroides organic fertilizer, three different varieties of melon were selected. The untreated plants were used as the control (CK) group, and the plants treated with S. alopecuroides-based organic fertilizer were selected as the treatment (T) group. The physical and chemical properties, enzyme activities and microbial community structure of the rhizosphere samples were also determined, and a correlation analysis with the fruit sweetness index was conducted. RESULTS: Sugar content of group T was at least 40% higher than that of group CK. The increase in fruit sugar content positively correlated with the increase in the abundance of beneficial microorganisms, including Pseudomonas, Bacillus, Mycobacterium, Burkholderia, Streptomyces, Acinetobacter, Proteobacteria, Lysobacter, Actinomycetes, Penicillium and Aspergillus. CONCLUSION: Sophora alopecuroides organic fertilizer could alter the composition and function of bacterial and fungal communities and promote the growth of beneficial bacteria in the melon plant rhizosphere. Further, it could increase the content of soluble solids and sugar in the fruits to achieve a sweetening effect. This fertilizer can be applied as a fruit sweetener in melon cultivation, improving the sugar content of the fruit and consequently the sweetness. © 2022 Society of Chemical Industry.


Assuntos
Cucurbitaceae , Microbiota , Sophora , Fertilizantes/análise , Rizosfera , Frutas/química , Microbiologia do Solo , Solo/química , Bactérias/genética , Açúcares
20.
J Am Chem Soc ; 144(35): 15938-15943, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006400

RESUMO

(+)-Matrine and (+)-isomatrine are tetracyclic alkaloids isolated from the plant Sophora flavescens, the roots of which are used in traditional Chinese medicine. Biosynthetically, these alkaloids are proposed to derive from three molecules of (-)-lysine via the intermediacy of the unstable cyclic imine Δ1-piperidine. Inspired by the biosynthesis, a new dearomative annulation reaction has been developed that leverages pyridine as a stable surrogate for Δ1-piperidine. In this key transformation, two molecules of pyridine are joined with a molecule of glutaryl chloride to give the complete tetracyclic framework of the matrine alkaloids in a single step. Using this dearomative annulation, isomatrine is synthesized in four steps from inexpensive commercially available chemicals. Isomatrine then serves as the precursor to additional lupin alkaloids, including matrine, allomatrine, isosophoridine, and sophoridine.


Assuntos
Alcaloides , Sophora , Alcaloides/química , Piperidinas , Piridinas , Quinolizinas/química , Sophora/química , Matrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA