Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2316117121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38776372

RESUMO

We report the reliable detection of reproducible patterns of blood-oxygenation-level-dependent (BOLD) MRI signals within the white matter (WM) of the spinal cord during a task and in a resting state. Previous functional MRI studies have shown that BOLD signals are robustly detectable not only in gray matter (GM) in the brain but also in cerebral WM as well as the GM within the spinal cord, but similar signals in WM of the spinal cord have been overlooked. In this study, we detected BOLD signals in the WM of the spinal cord in squirrel monkeys and studied their relationships with the locations and functions of ascending and descending WM tracts. Tactile sensory stimulus -evoked BOLD signal changes were detected in the ascending tracts of the spinal cord using a general-linear model. Power spectral analysis confirmed that the amplitude at the fundamental frequency of the response to a periodic stimulus was significantly higher in the ascending tracts than the descending ones. Independent component analysis of resting-state signals identified coherent fluctuations from eight WM hubs which correspond closely to the known anatomical locations of the major WM tracts. Resting-state analyses showed that the WM hubs exhibited correlated signal fluctuations across spinal cord segments in reproducible patterns that correspond well with the known neurobiological functions of WM tracts in the spinal cord. Overall, these findings provide evidence of a functional organization of intraspinal WM tracts and confirm that they produce hemodynamic responses similar to GM both at baseline and under stimulus conditions.


Assuntos
Imageamento por Ressonância Magnética , Saimiri , Medula Espinal , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Medula Espinal/fisiologia , Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Feminino
2.
Proc Natl Acad Sci U S A ; 120(42): e2219666120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824529

RESUMO

Recent studies have revealed the production of time-locked blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals throughout the entire brain in response to tasks, challenging the existence of sparse and localized brain functions and highlighting the pervasiveness of potential false negative fMRI findings. "Whole-brain" actually refers to gray matter, the only tissue traditionally studied with fMRI. However, several reports have demonstrated reliable detection of BOLD signals in white matter, which have previously been largely ignored. Using simple tasks and analyses, we demonstrate BOLD signal changes across the whole brain, in both white and gray matters, in similar manner to previous reports of whole brain studies. We investigated whether white matter displays time-locked BOLD signals across multiple structural pathways in response to a stimulus in a similar manner to the cortex. We find that both white and gray matter show time-locked activations across the whole brain, with a majority of both tissue types showing statistically significant signal changes for all task stimuli investigated. We observed a wide range of signal responses to tasks, with different regions showing different BOLD signal changes to the same task. Moreover, we find that each region may display different BOLD responses to different stimuli. Overall, we present compelling evidence that, just like all gray matter, essentially all white matter in the brain shows time-locked BOLD signal changes in response to multiple stimuli, challenging the idea of sparse functional localization and the prevailing wisdom of treating white matter BOLD signals as artifacts to be removed.


Assuntos
Substância Branca , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética
3.
Brain ; 147(6): 2245-2257, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38243610

RESUMO

Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.


Assuntos
Pulvinar , Lobo Temporal , Humanos , Feminino , Masculino , Adulto , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Pulvinar/fisiologia , Pulvinar/diagnóstico por imagem , Vias Neurais/fisiologia , Conectoma , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Idioma , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39046457

RESUMO

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.


Assuntos
Mapeamento Encefálico , Imagem de Tensor de Difusão , Córtex Visual , Vias Visuais , Humanos , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Masculino , Feminino , Adulto , Imagem de Tensor de Difusão/métodos , Mapeamento Encefálico/métodos , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem , Processamento de Imagem Assistida por Computador/métodos
5.
J Neurosci ; 43(19): 3557-3566, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028933

RESUMO

Most prior research has focused on characterizing averages in cognition, brain characteristics, or behavior, and attempting to predict differences in these averages among individuals. However, this overwhelming focus on mean levels may leave us with an incomplete picture of what drives individual differences in behavioral phenotypes by ignoring the variability of behavior around an individual's mean. In particular, enhanced white matter (WM) structural microstructure has been hypothesized to support consistent behavioral performance by decreasing Gaussian noise in signal transfer. Conversely, lower indices of WM microstructure are associated with greater within-subject variance in the ability to deploy performance-related resources, especially in clinical populations. We tested a mechanistic account of the "neural noise" hypothesis in a large adult lifespan cohort (Cambridge Centre for Ageing and Neuroscience) with over 2500 adults (ages 18-102; 1508 female; 1173 male; 2681 behavioral sessions; 708 MRI scans) using WM fractional anisotropy to predict mean levels and variability in reaction time performance on a simple behavioral task using a dynamic structural equation model. By modeling robust and reliable individual differences in within-person variability, we found support for a neural noise hypothesis (Kail, 1997), with lower fractional anisotropy predicted individual differences in separable components of behavioral performance estimated using dynamic structural equation model, including slower mean responses and increased variability. These effects remained when including age, suggesting consistent effects of WM microstructure across the adult lifespan unique from concurrent effects of aging. Crucially, we show that variability can be reliably separated from mean performance using advanced modeling tools, enabling tests of distinct hypotheses for each component of performance.SIGNIFICANCE STATEMENT Human cognitive performance is defined not just by the long-run average, but trial-to-trial variability around that average. However, investigations of cognitive abilities and changes during aging have largely ignored this variability component of behavior. We provide evidence that white matter (WM) microstructure predicts individual differences in mean performance and variability in a sample spanning the adult lifespan (18-102). Unlike prior studies of cognitive performance and variability, we modeled variability directly and distinct from mean performance using a dynamic structural equation model, which allows us to decouple variability from mean performance and other complex features of performance (e.g., autoregression). The effects of WM were robust above the effect of age, highlighting the role of WM in promoting fast and consistent performance.


Assuntos
Substância Branca , Adulto , Humanos , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Longevidade , Tempo de Reação/fisiologia , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Envelhecimento/fisiologia
6.
J Cogn Neurosci ; 36(6): 1184-1205, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579242

RESUMO

Healthy older adults often exhibit lower performance but increased functional recruitment of the frontoparietal control network during cognitive control tasks. According to the cortical disconnection hypothesis, age-related changes in the microstructural integrity of white matter may disrupt inter-regional neuronal communication, which in turn can impair behavioral performance. Here, we use fMRI and diffusion-weighted imaging to determine whether age-related differences in white matter microstructure contribute to frontoparietal over-recruitment and behavioral performance during a response inhibition (go/no-go) task in an adult life span sample (n = 145). Older and female participants were slower (go RTs) than younger and male participants, respectively. However, participants across all ages were equally accurate on the no-go trials, suggesting some participants may slow down on go trials to achieve high accuracy on no-go trials. Across the life span, functional recruitment of the frontoparietal network within the left and right hemispheres did not vary as a function of age, nor was it related to white matter fractional anisotropy (FA). In fact, only frontal FA and go RTs jointly mediated the association between age and no-go accuracy. Our results therefore suggest that frontal white matter cortical "disconnection" is an underlying driver of age-related differences in cognitive control, and white matter FA may not fully explain functional task-related activation in the frontoparietal network during the go/no-go task. Our findings add to the literature by demonstrating that white matter may be more important for certain cognitive processes in aging than task-related functional activation.


Assuntos
Envelhecimento , Lobo Frontal , Inibição Psicológica , Imageamento por Ressonância Magnética , Lobo Parietal , Substância Branca , Humanos , Masculino , Feminino , Substância Branca/fisiologia , Substância Branca/diagnóstico por imagem , Idoso , Envelhecimento/fisiologia , Adulto , Lobo Frontal/fisiologia , Lobo Frontal/diagnóstico por imagem , Pessoa de Meia-Idade , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Adulto Jovem , Tempo de Reação/fisiologia , Mapeamento Encefálico , Idoso de 80 Anos ou mais , Testes Neuropsicológicos , Imagem de Difusão por Ressonância Magnética
7.
Neuroimage ; 297: 120763, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39084280

RESUMO

Human brain gray matter (GM) has usually been clustered into multiple functional networks. The white matter (WM) fiber bundles are known to interconnect these networks simultaneously, engaging in numerous cognitive functions. However, the exact interconnections between GM and WM are still unclear, whether functional signals in WM rewires GM community organization remains to be explored. In this study, we divided brain functional connections into three types by using edge-centric method, including intra-GM, intra-WM and GM-WM connections, and calculated the edge community evaluation indexes for quantifying GM community engagement. The results showed that the involvement of WM significantly enhanced community entropy in the heteromodal system, while the sensory-attention system remained barely changed. In addition, delta community entropy showed a significant correlation with clinical cognitive scale. Our results suggested that WM rewired GM community organization, enhancing the community engagement of brain regions in the heteromodal system. This involvement was observed to be disrupted in disease groups. Our study revealed that considering the functional signals of GM and WM simultaneously could better understand the brain's functional organization.


Assuntos
Substância Cinzenta , Imageamento por Ressonância Magnética , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Idoso
8.
Eur J Neurosci ; 59(12): 3273-3291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649337

RESUMO

Despite the clinical significance of narcissistic personality, its neural bases have not been clarified yet, primarily because of methodological limitations of the previous studies, such as the low sample size, the use of univariate techniques and the focus on only one brain modality. In this study, we employed for the first time a combination of unsupervised and supervised machine learning methods, to identify the joint contributions of grey matter (GM) and white matter (WM) to narcissistic personality traits (NPT). After preprocessing, the brain scans of 135 participants were decomposed into eight independent networks of covarying GM and WM via parallel ICA. Subsequently, stepwise regression and Random Forest were used to predict NPT. We hypothesized that a fronto-temporo parietal network, mainly related to the default mode network, may be involved in NPT and associated WM regions. Results demonstrated a distributed network that included GM alterations in fronto-temporal regions, the insula and the cingulate cortex, along with WM alterations in cerebellar and thalamic regions. To assess the specificity of our findings, we also examined whether the brain network predicting narcissism could also predict other personality traits (i.e., histrionic, paranoid and avoidant personalities). Notably, this network did not predict such personality traits. Additionally, a supervised machine learning model (Random Forest) was used to extract a predictive model for generalization to new cases. Results confirmed that the same network could predict new cases. These findings hold promise for advancing our understanding of personality traits and potentially uncovering brain biomarkers associated with narcissism.


Assuntos
Rede de Modo Padrão , Substância Cinzenta , Narcisismo , Personalidade , Substância Branca , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Substância Cinzenta/anatomia & histologia , Masculino , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Personalidade/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Aprendizado de Máquina Supervisionado , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina não Supervisionado
9.
Eur J Neurosci ; 60(4): 4518-4535, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973167

RESUMO

The balance between goal-directed and habitual control has been proposed to determine the flexibility of instrumental behaviour, in both humans and animals. This view is supported by neuroscientific studies that have implicated dissociable neural pathways in the ability to flexibly adjust behaviour when outcome values change. A previous Diffusion Tensor Imaging study provided preliminary evidence that flexible instrumental performance depends on the strength of parallel cortico-striatal white-matter pathways previously implicated in goal-directed and habitual control. Specifically, estimated white-matter strength between caudate and ventromedial prefrontal cortex correlated positively with behavioural flexibility, and posterior putamen-premotor cortex connectivity correlated negatively, in line with the notion that these pathways compete for control. However, the sample size of the original study was limited, and so far, there have been no attempts to replicate these findings. In the present study, we aimed to conceptually replicate these findings by testing a large sample of 205 young adults to relate cortico-striatal connectivity to performance on the slips-of-action task. In short, we found only positive neural correlates of goal-directed performance, including striatal connectivity (caudate and anterior putamen) with the dorsolateral prefrontal cortex. However, we failed to provide converging evidence for the existence of a neural habit system that puts limits on the capacity for flexible, goal-directed action. We discuss the implications of our findings for dual-process theories of instrumental action.


Assuntos
Corpo Estriado , Objetivos , Vias Neurais , Substância Branca , Humanos , Substância Branca/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Masculino , Feminino , Adulto , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/anatomia & histologia , Adulto Jovem , Vias Neurais/fisiologia , Adolescente , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos
10.
Annu Rev Neurosci ; 39: 103-28, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27050319

RESUMO

Progress in magnetic resonance imaging (MRI) now makes it possible to identify the major white matter tracts in the living human brain. These tracts are important because they carry many of the signals communicated between different brain regions. MRI methods coupled with biophysical modeling can measure the tissue properties and structural features of the tracts that impact our ability to think, feel, and perceive. This review describes the fundamental ideas of the MRI methods used to identify the major white matter tracts in the living human brain.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Substância Branca/patologia , Substância Branca/fisiologia , Animais , Mapeamento Encefálico/métodos , Substância Cinzenta/patologia , Substância Cinzenta/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/patologia
11.
Hum Brain Mapp ; 45(7): e26705, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716698

RESUMO

The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.


Assuntos
Canto , Substância Branca , Humanos , Adulto , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Adulto Jovem , Canto/fisiologia , Idoso de 80 Anos ou mais , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Branca/anatomia & histologia , Envelhecimento/fisiologia , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/fisiologia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão
12.
Hum Brain Mapp ; 45(11): e26800, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39093044

RESUMO

White matter (WM) functional activity has been reliably detected through functional magnetic resonance imaging (fMRI). Previous studies have primarily examined WM bundles as unified entities, thereby obscuring the functional heterogeneity inherent within these bundles. Here, for the first time, we investigate the function of sub-bundles of a prototypical visual WM tract-the optic radiation (OR). We use the 7T retinotopy dataset from the Human Connectome Project (HCP) to reconstruct OR and further subdivide the OR into sub-bundles based on the fiber's termination in the primary visual cortex (V1). The population receptive field (pRF) model is then applied to evaluate the retinotopic properties of these sub-bundles, and the consistency of the pRF properties of sub-bundles with those of V1 subfields is evaluated. Furthermore, we utilize the HCP working memory dataset to evaluate the activations of the foveal and peripheral OR sub-bundles, along with LGN and V1 subfields, during 0-back and 2-back tasks. We then evaluate differences in 2bk-0bk contrast between foveal and peripheral sub-bundles (or subfields), and further examine potential relationships between 2bk-0bk contrast and 2-back task d-prime. The results show that the pRF properties of OR sub-bundles exhibit standard retinotopic properties and are typically similar to the properties of V1 subfields. Notably, activations during the 2-back task consistently surpass those under the 0-back task across foveal and peripheral OR sub-bundles, as well as LGN and V1 subfields. The foveal V1 displays significantly higher 2bk-0bk contrast than peripheral V1. The 2-back task d-prime shows strong correlations with 2bk-0bk contrast for foveal and peripheral OR fibers. These findings demonstrate that the blood oxygen level-dependent (BOLD) signals of OR sub-bundles encode high-fidelity visual information, underscoring the feasibility of assessing WM functional activity at the sub-bundle level. Additionally, the study highlights the role of OR in the top-down processes of visual working memory beyond the bottom-up processes for visual information transmission. Conclusively, this study innovatively proposes a novel paradigm for analyzing WM fiber tracts at the individual sub-bundle level and expands understanding of OR function.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Memória de Curto Prazo , Vias Visuais , Humanos , Memória de Curto Prazo/fisiologia , Conectoma/métodos , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Adulto , Masculino , Feminino , Percepção Visual/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Substância Branca/anatomia & histologia , Córtex Visual Primário/fisiologia , Córtex Visual Primário/diagnóstico por imagem , Corpos Geniculados/fisiologia , Corpos Geniculados/diagnóstico por imagem , Adulto Jovem , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem
13.
Hum Brain Mapp ; 45(9): e26771, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38925589

RESUMO

Neuroimaging studies have consistently demonstrated concurrent activation of the human precuneus and temporal pole (TP), both during resting-state conditions and various higher-order cognitive functions. However, the precise underlying structural connectivity between these brain regions remains uncertain despite significant advancements in neuroscience research. In this study, we investigated the connectivity of the precuneus and TP by employing parcellation-based fiber micro-dissections in human brains and fiber tractography techniques in a sample of 1065 human subjects and a sample of 41 rhesus macaques. Our results demonstrate the connectivity between the posterior precuneus area POS2 and the areas 35, 36, and TG of the TP via the fifth subcomponent of the cingulum (CB-V) also known as parahippocampal cingulum. This finding contributes to our understanding of the connections within the posteromedial cortices, facilitating a more comprehensive integration of anatomy and function in both normal and pathological brain processes. PRACTITIONER POINTS: Our investigation delves into the intricate architecture and connectivity patterns of subregions within the precuneus and temporal pole, filling a crucial gap in our knowledge. We revealed a direct axonal connection between the posterior precuneus (POS2) and specific areas (35, 35, and TG) of the temporal pole. The direct connections are part of the CB-V pathway and exhibit a significant association with the cingulum, SRF, forceps major, and ILF. Population-based human tractography and rhesus macaque fiber tractography showed consistent results that support micro-dissection outcomes.


Assuntos
Imagem de Tensor de Difusão , Macaca mulatta , Vias Neurais , Lobo Parietal , Lobo Temporal , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Lobo Temporal/anatomia & histologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Lobo Parietal/anatomia & histologia , Animais , Imagem de Tensor de Difusão/métodos , Masculino , Adulto , Feminino , Vias Neurais/diagnóstico por imagem , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Adulto Jovem , Axônios/fisiologia , Conectoma , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Giro do Cíngulo/anatomia & histologia
14.
Cereb Cortex ; 33(6): 3080-3097, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35802485

RESUMO

The neurobiological underpinnings of action-related episodic memory and how enactment contributes to efficient memory encoding are not well understood. We examine whether individual differences in level (n = 338) and 5-year change (n = 248) in the ability to benefit from motor involvement during memory encoding are related to gray matter (GM) volume, white matter (WM) integrity, and dopamine-regulating genes in a population-based cohort (age range = 25-80 years). A latent profile analysis identified 2 groups with similar performance on verbal encoding but with marked differences in the ability to benefit from motor involvement during memory encoding. Impaired ability to benefit from enactment was paired with smaller HC, parahippocampal, and putamen volume along with lower WM microstructure in the fornix. Individuals with reduced ability to benefit from encoding enactment over 5 years were characterized by reduced HC and motor cortex GM volume along with reduced WM microstructure in several WM tracts. Moreover, the proportion of catechol-O-methyltransferase-Val-carriers differed significantly between classes identified from the latent-profile analysis. These results provide converging evidence that individuals with low or declining ability to benefit from motor involvement during memory encoding are characterized by low and reduced GM volume in regions critical for memory and motor functions along with altered WM microstructure.


Assuntos
Catecol O-Metiltransferase , Córtex Cerebral , Memória Episódica , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Estudos Transversais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Tamanho do Órgão/genética , Tamanho do Órgão/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
15.
J Neurol Phys Ther ; 48(3): 151-158, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709008

RESUMO

BACKGROUND AND PURPOSE: Sport-specific training may improve postural control, while repetitive head acceleration events (RHAEs) may compromise it. Understanding the neural mechanisms underlying postural control may contextualize changes due to training and RHAE. The goal of this study was to determine whether postural sway during the Balance Error Scoring System (BESS) is related to white matter organization (WMO) in collegiate athletes. METHODS: Collegiate soccer ( N = 33) and non-soccer athletes ( N = 44) completed BESS and diffusion tensor imaging. Postural sway during each BESS stance, fractional anisotropy (FA), and mean diffusivity (MD) were extracted for each participant. Partial least squares analyses determined group differences in postural sway and WMO and the relationship between postural sway and WMO in soccer and non-soccer athletes separately. RESULTS: Soccer athletes displayed better performance during BESS 6, with lower FA and higher MD in the medial lemniscus (ML) and inferior cerebellar peduncle (ICP), compared to non-soccer athletes. In soccer athletes, lower sway during BESS 2, 5, and 6 was associated with higher FA and lower MD in the corticospinal tract, ML, and ICP. In non-soccer athletes, lower sway during BESS 2 and 4 was associated with higher FA and lower MD in the ML and ICP. BESS 1 was associated with higher FA, and BESS 3 was associated with lower MD in the same tracts in non-soccer athletes. DISCUSSION AND CONCLUSIONS: Soccer and non-soccer athletes showed unique relationships between sway and WMO, suggesting that sport-specific exposures are partly responsible for changes in neurological structure and accompanying postural control performance and should be considered when evaluating postural control after injury.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content, available at: http://links.lww.com/JNPT/A472 ).


Assuntos
Atletas , Imagem de Tensor de Difusão , Equilíbrio Postural , Futebol , Humanos , Equilíbrio Postural/fisiologia , Futebol/fisiologia , Masculino , Adulto Jovem , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Feminino , Adolescente
16.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716261

RESUMO

Accurate characterization of the time courses of blood-oxygen-level-dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.


Assuntos
Monitorização Hemodinâmica/métodos , Substância Branca/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Hemodinâmica/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroquímica/métodos , Saturação de Oxigênio/fisiologia , Descanso/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972435

RESUMO

During the second and third trimesters of human gestation, rapid neurodevelopment is underpinned by fundamental processes including neuronal migration, cellular organization, cortical layering, and myelination. In this time, white matter growth and maturation lay the foundation for an efficient network of structural connections. Detailed knowledge about this developmental trajectory in the healthy human fetal brain is limited, in part, due to the inherent challenges of acquiring high-quality MRI data from this population. Here, we use state-of-the-art high-resolution multishell motion-corrected diffusion-weighted MRI (dMRI), collected as part of the developing Human Connectome Project (dHCP), to characterize the in utero maturation of white matter microstructure in 113 fetuses aged 22 to 37 wk gestation. We define five major white matter bundles and characterize their microstructural features using both traditional diffusion tensor and multishell multitissue models. We found unique maturational trends in thalamocortical fibers compared with association tracts and identified different maturational trends within specific sections of the corpus callosum. While linear maturational increases in fractional anisotropy were seen in the splenium of the corpus callosum, complex nonlinear trends were seen in the majority of other white matter tracts, with an initial decrease in fractional anisotropy in early gestation followed by a later increase. The latter is of particular interest as it differs markedly from the trends previously described in ex utero preterm infants, suggesting that this normative fetal data can provide significant insights into the abnormalities in connectivity which underlie the neurodevelopmental impairments associated with preterm birth.


Assuntos
Córtex Cerebral/fisiologia , Corpo Caloso/fisiologia , Desenvolvimento Fetal/fisiologia , Tálamo/fisiologia , Substância Branca/fisiologia , Anisotropia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Conectoma , Corpo Caloso/anatomia & histologia , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Feto , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Gravidez , Segundo Trimestre da Gravidez , Terceiro Trimestre da Gravidez , Tálamo/anatomia & histologia , Tálamo/diagnóstico por imagem , Útero/diagnóstico por imagem , Útero/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
18.
J Neurosci ; 42(32): 6258-6266, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817578

RESUMO

Goal-directed behavior crucially relies on our capacity to suppress impulses and predominant behavioral responses. This ability, called inhibitory control, emerges in early childhood with marked improvements between 3 and 4 years. Here, we ask which brain structures are related to the emergence of this critical ability. Using a multimodal approach, we relate the pronounced behavioral improvements in different facets of 3- and 4-year-olds' (N = 37, 20 female) inhibitory control to structural indices of maturation in the developing brain assessed with MRI. Our results show that cortical and subcortical structure of core regions in the adult cognitive control network, including the PFC, thalamus, and the inferior parietal cortices, is associated with early inhibitory functioning in preschool children. Probabilistic tractography revealed an association of frontoparietal (i.e., the superior longitudinal fascicle) and thalamocortical connections with early inhibitory control. Notably, these associations to brain structure were distinct for different facets of early inhibitory control, often referred to as motivational ("hot") and cognitive ("cold") inhibitory control. Our findings thus reveal the structural brain networks and connectivity related to the emergence of this core faculty of human cognition.SIGNIFICANCE STATEMENT The capacity to suppress impulses and behavioral responses is crucial for goal-directed behavior. This ability, called inhibitory control, develops between the ages of 3 and 4 years. The factors behind this developmental milestone have been debated intensely for decades; however, the brain structure that underlies the emergence of inhibitory control in early childhood is largely unknown. Here, we relate the pronounced behavioral improvements in inhibitory control between 3 and 4 years with structural brain markers of gray matter and white matter maturation. Using a multimodal approach that combines analyses of cortical surface structure, subcortical structures, and white matter connectivity, our results reveal the structural brain networks and connectivity related to this core faculty of human cognition.


Assuntos
Substância Branca , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Pré-Escolar , Cognição/fisiologia , Feminino , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Lobo Parietal/fisiologia , Substância Branca/fisiologia
19.
Neuroimage ; 269: 119916, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36736638

RESUMO

There is growing evidence that blood-oxygen-level-dependent (BOLD) activity in the white matter (WM) can be detected by functional magnetic resonance imaging (fMRI). However, the functional relevance and significance of WM BOLD signals remain controversial. Here we investigated whether 7T BOLD fMRI can reveal fine-scale functional organizations of a WM bundle. Population receptive field (pRF) analyses of the 7T retinotopy dataset from the Human Connectome Project revealed clear contralateral retinotopic organizations of two visual WM bundles: the optic radiation (OR) and the vertical occipital fasciculus (VOF). The retinotopic maps of OR are highly consistent with post-mortem dissections and diffusion tractographies, while the VOF maps are compatible with the dorsal and ventral visual areas connected by the WM. Similar to the grey matter (GM) visual areas, both WM bundles show over-representations of the central visual field and increasing pRF size with eccentricity. Hemodynamic response functions of visual WM were slower and wider compared with those of GM areas. These findings clearly demonstrate that WM BOLD at 7 Tesla is closely coupled with neural activity related to axons, encoding highly specific information that can be used to characterize fine-scale functional organizations of a WM bundle.


Assuntos
Substância Branca , Humanos , Substância Branca/fisiologia , Campos Visuais , Imageamento por Ressonância Magnética , Imagem de Tensor de Difusão/métodos , Substância Cinzenta
20.
Proc Natl Acad Sci U S A ; 117(24): 13227-13237, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482855

RESUMO

Communication and oscillatory synchrony between distributed neural populations are believed to play a key role in multiple cognitive and neural functions. These interactions are mediated by long-range myelinated axonal fiber bundles, collectively termed as white matter. While traditionally considered to be static after development, white matter properties have been shown to change in an activity-dependent way through learning and behavior-a phenomenon known as white matter plasticity. In the central nervous system, this plasticity stems from oligodendroglia, which form myelin sheaths to regulate the conduction of nerve impulses across the brain, hence critically impacting neural communication. We here shift the focus from neural to glial contribution to brain synchronization and examine the impact of adaptive, activity-dependent changes in conduction velocity on the large-scale phase synchronization of neural oscillators. Using a network model based on primate large-scale white matter neuroanatomy, our computational and mathematical results show that such plasticity endows white matter with self-organizing properties, where conduction delay statistics are autonomously adjusted to ensure efficient neural communication. Our analysis shows that this mechanism stabilizes oscillatory neural activity across a wide range of connectivity gain and frequency bands, making phase-locked states more resilient to damage as reflected by diffuse decreases in connectivity. Critically, our work suggests that adaptive myelination may be a mechanism that enables brain networks with a means of temporal self-organization, resilience, and homeostasis.


Assuntos
Sincronização de Fases em Eletroencefalografia/fisiologia , Bainha de Mielina/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/fisiologia , Conectoma , Modelos Neurológicos , Rede Nervosa/citologia , Condução Nervosa/fisiologia , Neuroglia/fisiologia , Primatas , Substância Branca/citologia , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA