Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38565142

RESUMO

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Glicoproteínas de Membrana , Taurina , Taurina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Estresse do Retículo Endoplasmático , Fator 4 Ativador da Transcrição/metabolismo , Transdução de Sinais , Feminino , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Fator de Transcrição STAT3/metabolismo
2.
J Cell Mol Med ; 28(8): e18257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526033

RESUMO

This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 µg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.


Assuntos
Aterosclerose , Compostos de Boro , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Colesterol/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Taurina/metabolismo
3.
Infect Immun ; 92(8): e0022424, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38975764

RESUMO

Colonization of the human stomach with Helicobacter pylori strains producing active forms of the secreted toxin VacA is associated with an increased risk of peptic ulcer disease and gastric cancer, compared with colonization with strains producing hypoactive forms of VacA. Previous studies have shown that active s1m1 forms of VacA cause cell vacuolation and mitochondrial dysfunction. In this study, we sought to define the cellular metabolic consequences of VacA intoxication. Untargeted metabolomic analyses revealed that several hundred metabolites were significantly altered in VacA-treated gastroduodenal cells (AGS and AZ-521) compared with control cells. Pathway analysis suggested that VacA caused alterations in taurine and hypotaurine metabolism. Treatment of cells with the purified active s1m1 form of VacA, but not hypoactive s2m1 or Δ6-27 VacA-mutant proteins (defective in membrane channel formation), caused reductions in intracellular taurine and hypotaurine concentrations. Supplementation of the tissue culture medium with taurine or hypotaurine protected AZ-521 cells against VacA-induced cell death. Untargeted global metabolomics of VacA-treated AZ-521 cells or AGS cells in the presence or absence of extracellular taurine showed that taurine was the main intracellular metabolite significantly altered by extracellular taurine supplementation. These results indicate that VacA causes alterations in cellular taurine metabolism and that repletion of taurine is sufficient to attenuate VacA-induced cell death. We discuss these results in the context of previous literature showing the important role of taurine in cell physiology and the pathophysiology or treatment of multiple pathologic conditions, including gastric ulcers, cardiovascular disease, malignancy, inflammatory diseases, and other aging-related disorders.


Assuntos
Proteínas de Bactérias , Helicobacter pylori , Taurina , Taurina/metabolismo , Taurina/análogos & derivados , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Helicobacter pylori/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno , Metabolômica
4.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637413

RESUMO

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Assuntos
Diabetes Mellitus Experimental , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Axônios/metabolismo , Axônios/patologia , Diabetes Mellitus Experimental/metabolismo , Fator de Crescimento Neural/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Taurina/farmacologia , Taurina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
J Pharmacol Sci ; 154(3): 175-181, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395518

RESUMO

Taurine (2-aminoethanesulfonic acid) is a free amino acid found ubiquitously and abundantly in mammalian tissues. Taurine content in the heart is approximately 20 mM, which is approximately 100 times higher than plasma concentration. The high intracellular concentration of taurine is maintained by the taurine transporter (TauT; Slc6a6). Taurine plays various roles, including the regulation of intracellular ion dynamics, calcium handling, and acting as an antioxidant in the heart. Some species, such as cats and foxes, have low taurine biosynthetic capacity, and dietary taurine deficiency can lead to disorders such as dilated cardiomyopathy and blindness. In humans, the relationship between dietary taurine deficiency and cardiomyopathy is not yet clear, but a genetic mutation related to the taurine transporter has been reported to be associated with dilated cardiomyopathy. On the other hand, many studies have shown an association between dietary taurine intake and age-related diseases. Notably, it has recently been reported that taurine declines with age and is associated with lifespan in worms and mice, as well as healthspan in mice and monkeys. In this review, we summarize the role of dietary and genetic taurine deficiency in the development of cardiomyopathy and aging.


Assuntos
Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cardiomiopatia Dilatada/genética , Coração , Envelhecimento/genética , Taurina/metabolismo , Mamíferos/metabolismo
6.
J Pharmacol Sci ; 154(1): 9-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081683

RESUMO

Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.


Assuntos
Cisteína Dioxigenase , Mamíferos , Animais , Cisteína Dioxigenase/análise , Cisteína Dioxigenase/metabolismo , Mamíferos/metabolismo , Fígado/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Enxofre/análise , Enxofre/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38642610

RESUMO

The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.


Assuntos
Crassostrea , Cisteína Dioxigenase , Polimorfismo de Nucleotídeo Único , Taurina , Taurina/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Crassostrea/enzimologia , Animais , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Haplótipos
8.
Sci Rep ; 14(1): 2686, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302509

RESUMO

Doxorubicin (DOX) is an effective anticancer drug with potent antitumour activity. However, the application of DOX is limited by its adverse reactions, such as depression. Taurine can alleviate depression induced by multiple factors. However, it is still unclear whether and how taurine improves DOX-induced depression. To address this question, the aim of this study was to explore the potential mechanism by which taurine protects against DOX-induced depression. Mice were randomly divided into three groups (n = 8): (1) the control group, (2) the DOX group, and (3) the DOX + taurine group. The open field test (OFT), elevated plus maze test, and forced swim test (FST) were first performed to assess the effects of DOX and taurine on the behaviour of mice. Next, a combined transcriptomic and metabolomic analysis was performed to analyse the possible antidepressive effect of taurine. Taurine pretreatment increased the total distance travelled and speed of mice in the OFT, increased the number of entries into the open arm and the time spent in the open arm, and reduced the immobility time in the FST. In addition, 179 differential genes and 51 differentially abundant metabolites were detected in the DOX + taurine group compared to the DOX group. Furthermore, differential genes and differentially abundant metabolites were found to be jointly involved in 21 pathways, which may be closely related to the antidepressant effect of taurine. Taurine alleviated DOX-induced depressive behaviour. The various pathways identified in this study, such as the serotonergic synapse and the inflammatory mediator regulation of TRP channels, may be key regulatory pathways related to depression and antidepressant effects.


Assuntos
Depressão , Taurina , Camundongos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/genética , Taurina/metabolismo , Doxorrubicina/toxicidade , Antidepressivos/farmacologia , Perfilação da Expressão Gênica
9.
Sci Rep ; 14(1): 7427, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548872

RESUMO

Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aß) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aß deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aß; providing an insight into a novel preventive strategy in AD.


Assuntos
Doença de Alzheimer , Microglia , Camundongos , Animais , Microglia/metabolismo , Taurina/farmacologia , Taurina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Água/metabolismo , Modelos Animais de Doenças
10.
In Vitro Cell Dev Biol Anim ; 60(1): 23-35, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117455

RESUMO

It has been well established that the circulating taurine affects the insulin synthesis in pancreatic islet ß-cells, whereas miR-7a and LIM-homeodomain transcription factor Isl-1 are important intracellular factors regulating insulin transcription and synthesis. However, it still remains unknown whether taurine regulates insulin synthesis by affecting miR-7a and/or Isl-1 expressions in mouse pancreatic islet ß-cells. The present study was thus proposed to identify the effects of taurine on the expressions of miR-7a and/or Isl-1 and their relations to insulin synthesis in mouse pancreatic islet ß-cells by using miR-7a2 knockout (KO) and taurine transporter (TauT) KO mouse models and the related in vitro experiments. The results demonstrated that taurine supplement significantly decreased the pancreas miR-7a expression, but sharply upregulated the pancreas Isl-1 and insulin expressions, and serum insulin levels. However, the enhanced effects of taurine on Isl-1 expression and insulin synthesis were mitigated in the TauT KO and miR-7a2 KO mice. In addition, our results confirmed that taurine markedly increased pancreas RAF1 and ERK1/2 expressions. Collectively, the present study firstly demonstrates that taurine regulates insulin synthesis through TauT/miR-7a/RAF1/ERK1/2/Isl-1 signaling pathway, which are crucial for our understanding the mechanisms of taurine affecting insulin synthesis, and also potential for establishing the therapeutic strategies for diabetes and the diseases related to metabolism.


Assuntos
Células Secretoras de Insulina , MicroRNAs , Animais , Camundongos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Taurina/farmacologia , Taurina/metabolismo
11.
Carbohydr Polym ; 329: 121780, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286550

RESUMO

Our research aimed to enhance the oral bioavailability of doxorubicin hydrochloride (DOX·HCl) while minimizing the potential for myocardial toxicity. To achieve this goal, we developed a new method that utilizes a coating material to encapsulate the drug in liposomes, which can specifically target intestinal taurine transporter proteins. This coating material, TAU-CS, was created by combining taurine with chitosan. We characterized TAU-CS using various methods, including 1H NMR, FT-IR, and scanning electron microscopy (SEM). The resulting liposomes exhibited a regular spherical morphology, with a particle size of 195.7 nm, an encapsulation efficiency of 91.23 %, and a zeta potential of +11.65 mV. Under simulated gastrointestinal conditions, TAU-CS/LIP@DOX·HCl exhibited good stability and slow release. Pharmacokinetic studies revealed that, compared with DOX·HCl, TAU-CS/LIP@DOX·HCl had a relative bioavailability of 342 %. Intracellular uptake, immunofluorescence imaging, and permeation assays confirmed that the taurine transporter protein mediates the intestinal uptake of these liposomes. Our study suggested that liposomes coated with TAU-CS could serve as an effective oral delivery system and that targeting the taurine transporter protein shows promise in enhancing drug absorption.


Assuntos
Quitosana , Lipossomos , Quitosana/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Lipossomos/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Taurina/efeitos dos fármacos , Taurina/metabolismo
12.
Placenta ; 147: 59-67, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38325050

RESUMO

INTRODUCTION: Hypotaurine, a precursor to taurine, is known for its antioxidant properties and is prominently present in fetal plasma and the placenta. Our previous research revealed that ezrin-knockout mice experience fetal growth retardation, coinciding with reduced hypotaurine levels in fetal plasma. This study aims to elucidate the expression and role of hypotaurine transporters within the placenta. METHODS: We employed quantitative RT-PCR to measure mRNA expression of GAT transporter family members in the placenta during mid-to-late gestation. LC/MS/MS was used to analyze the distribution of hypotaurine in different placental subregions. Immunohistochemistry was utilized to examine the localization of GAT2 in mice. Placental hypotaurine uptake from fetal circulation was studied via umbilical perfusion in rats. RESULTS: Among hypotaurine transporters, GAT2 exhibited increased mRNA and protein expression in murine placenta during mid-to-late gestation. Notably, GAT2/Slc6a13 mRNA and hypotaurine were most concentrated in the labyrinth of murine placenta. In contrast, enzymes responsible for hypotaurine synthesis, such as cysteine dioxygenase, cysteine sulfinic acid decarboxylase, and 2-aminoethanethiol dioxygenase, showed minimal expression in the labyrinth. These findings suggest that GAT2 is a key determinant of hypotaurine levels in the placental labyrinth. Immunohistochemical examination unveiled that GAT2 was predominantly localized on the fetal-facing plasma membrane within syncytiotrophoblasts, which co-localized with ezrin. In rat umbilical perfusion experiments, the GAT2/3 and TauT inhibitor, SNAP-5114, significantly reduced hypotaurine extraction from fetal circulation to the placenta. DISCUSSION: The results suggest that GAT2 plays a pivotal role in the concentrative uptake of hypotaurine from fetal plasma within syncytiotrophoblasts of the placenta.


Assuntos
Placenta , Espectrometria de Massas em Tandem , Taurina/análogos & derivados , Ratos , Camundongos , Gravidez , Feminino , Animais , Placenta/metabolismo , Trofoblastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Camundongos Knockout , RNA Mensageiro/metabolismo
13.
Brain Res ; 1838: 148998, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754802

RESUMO

Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.


Assuntos
Concussão Encefálica , Modelos Animais de Doenças , Microdiálise , Ratos Sprague-Dawley , Animais , Concussão Encefálica/metabolismo , Microdiálise/métodos , Masculino , Ratos , Hipocampo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Taurina/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo
14.
Biochem Pharmacol ; 226: 116386, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909788

RESUMO

Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Taurina , Taurina/metabolismo , Taurina/farmacologia , Humanos , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia
15.
Sci Rep ; 14(1): 19546, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174711

RESUMO

Aging-related biochemical changes in nerve cells lead to dysfunctional synapses and disrupted neuronal circuits, ultimately affecting vital processes such as brain plasticity, learning, and memory. The imbalance between excitation and inhibition in synaptic function during aging contributes to cognitive impairment, emphasizing the importance of compensatory mechanisms. Fear conditioning-related plasticity of the somatosensory barrel cortex, relying on the proper functioning and extensive up regulation of the GABAergic system, in particular interneurons containing somatostatin, is compromised in aging (one-year-old) mice. The present research explores two potential interventions, taurine supplementation, and environmental enrichment, revealing their effectiveness in supporting learning-induced plasticity in the aging mouse brain. They do not act through a mechanism normalizing the Glutamate/GABA balance that is disrupted in aging. Still, they allow for increased somatostatin levels, an effect observed in young animals after learning. These findings highlight the potential of lifestyle interventions and diet supplementation to mitigate age-related cognitive decline by promoting experience-dependent plasticity.


Assuntos
Envelhecimento , Suplementos Nutricionais , Plasticidade Neuronal , Taurina , Animais , Plasticidade Neuronal/fisiologia , Envelhecimento/fisiologia , Taurina/metabolismo , Taurina/farmacologia , Taurina/administração & dosagem , Camundongos , Masculino , Somatostatina/metabolismo , Camundongos Endogâmicos C57BL , Aprendizagem/fisiologia , Meio Ambiente , Medo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Encéfalo/metabolismo , Encéfalo/fisiologia
16.
Adv Microb Physiol ; 85: 145-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059820

RESUMO

The human gut flora comprises a dynamic network of bacterial species that coexist in a finely tuned equilibrium. The interaction with intestinal bacteria profoundly influences the host's development, metabolism, immunity, and overall health. Furthermore, dysbiosis, a disruption of the gut microbiota, can induce a variety of diseases, not exclusively associated with the intestinal tract. The increased consumption of animal protein, high-fat and high-sugar diets in Western countries has been implicated in the rise of chronic and inflammatory illnesses associated with dysbiosis. In particular, this diet leads to the overgrowth of sulfide-producing bacteria, known as sulfidogenic bacteria, which has been linked to inflammatory bowel diseases and colorectal cancer, among other disorders. Sulfidogenic bacteria include sulfate-reducing bacteria (Desulfovibrio spp.) and Bilophila wadsworthia among others, which convert organic and inorganic sulfur compounds to sulfide through the dissimilatory sulfite reduction pathway. At high concentrations, sulfide is cytotoxic and disrupts the integrity of the intestinal epithelium and mucus barrier, triggering inflammation. Besides producing sulfide, B. wadsworthia has revealed significant pathogenic potential, demonstrated in the ability to cause infection, adhere to intestinal cells, promote inflammation, and compromise the integrity of the colonic mucus layer. This review delves into the mechanisms by which taurine and sulfide-driven gut dysbiosis contribute to the pathogenesis of sulfidogenic bacteria, and discusses the role of these gut microbes, particularly B. wadsworthia, in human diseases.


Assuntos
Disbiose , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Disbiose/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Sulfetos/metabolismo , Desulfovibrio/metabolismo , Bilophila/metabolismo , Taurina/metabolismo , Animais , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/metabolismo , Bactérias/metabolismo , Bactérias/genética
17.
Gene ; 928: 148786, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047959

RESUMO

Cysteine dioxygenase (CDO) is a rate-limiting enzyme in taurine biosynthesis. Taurine synthesis is limited in marine fish, and most taurine is provided by their diet. Although a nutritional study indicated that the transcription of ToCDO was significantly altered by treatment with 10.5 g/kg taurine in food, the regulatory mechanism of this biosynthesis has not been fully elucidated. In the present study, we identified the sequence features of Trachinotus ovatus cysteine dioxygenase (ToCDO), which consists of 201 amino acids. It is characterized by being a member of the cupin superfamily with two conserved cupin motifs located at amino acids 82-102 and 131-145 and with a glutamate residue substituted by a cysteine in its first motif. Moreover, phylogenetic analysis revealed that the similarity of the amino acid sequences between ToCDO and other species ranged from 84.58 % to 91.54 %. Furthermore, a high-performance liquid-phase assay of the activity of recombinantly purified ToCDO protein showed that ToCDO could catalyse the oxidation of cysteine to produce cysteine sulphite. Furthermore, the core promoter region of CDO was identified as -1182-+1 bp. Mutational analysis revealed that the HNF4α and NF-κB sites significantly and actively affected the transcription of CDO. To further investigate the binding of these two loci to the CDO promoter, an electrophoretic shift assay (EMSA) was performed to verify that HNF4α-1 and NF-κB-1 interact with the binding sites of the promoter and promote CDO gene expression, respectively. Additionally, cotransfection experiments showed that HNF4α or both HNF4α and NF-κB can significantly influence CDO promoter activity, and HNF4α was the dominant factor. Thus, HNF4α and NF-κB play important roles in CDO expression and may influence taurine biosynthesis within T. ovatus by regulating CDO expression.


Assuntos
Cisteína Dioxigenase , Fator 4 Nuclear de Hepatócito , NF-kappa B , Taurina , Animais , Taurina/metabolismo , Taurina/biossíntese , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Regiões Promotoras Genéticas , Filogenia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Sequência de Aminoácidos , Peixes/genética , Peixes/metabolismo
18.
Biochem Pharmacol ; 222: 116103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428825

RESUMO

Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg). Liver metabolomics revealed that genetic deletion of hepatic CDO1 reduced de novo taurine synthesis but had no impact on hepatic taurine abundance or bile acid conjugation. Consistent with reduced cysteine catabolism, Hep-CDO1 KO mice showed increased hepatic cysteine abundance but unaltered methionine cycle intermediates and coenzyme A synthesis. Upon acetaminophen overdose, Hep-CDO1 KO mice showed increased GSH synthesis capacity and alleviated liver injury. In contrast, hepatic CDO1 overexpression in Hep-CDO1 Tg mice stimulated hepatic cysteine to taurine conversion, resulting in reduced hepatic cysteine abundance. However, Hep-CDO1 Tg mice and WT showed similar susceptibility to acetaminophen-induced liver injury. Hep-CDO1 Tg mice showed similar hepatic taurine and coenzyme A compared to WT mice. In summary, these findings suggest that bile acid and FXR signaling inhibition of CDO1-mediated hepatic cysteine catabolism preferentially modulates hepatic GSH synthesis capacity and antioxidant defense, but has minimal effect on hepatic taurine and coenzyme A abundance. Repression of hepatic CDO1 may contribute to the hepatoprotective effects of FXR activation under certain pathologic conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cisteína Dioxigenase , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glutationa , Animais , Camundongos , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Antioxidantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Coenzima A/metabolismo , Cisteína/metabolismo , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Glutationa/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taurina/farmacologia , Taurina/metabolismo
19.
Psychopharmacology (Berl) ; 241(7): 1387-1398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38480557

RESUMO

RATIONALE: Chronic amphetamine (AMPH) use leading to addiction results in adaptive changes within the central nervous system that persist well beyond the drug's elimination from the body and can precipitate relapse. Notably, alterations in glutamatergic neurotransmission play a crucial role in drug-associated behaviours. OBJECTIVES: This study aimed to identify changes induced by amphetamine in glutamate levels and the neuromodulators of glutamatergic neurotransmission (taurine and kynurenic acid) observable after 14 and 28 days of abstinence in key brain regions implicated in addiction: the cortex (Cx), nucleus accumbens (Acb), and dorsolateral striatum (CPu-L). METHODS: The rats were administered 12 doses of amphetamine (AMPH) intraperitoneally (i.p.) at 1.5 mg/kg. The behavioural response was evaluated through ultrasonic vocalizations (USV). High-performance liquid chromatography (HPLC) was used to measure the levels of glutamate, taurine, and kynurenic acid in the Cx, Acb, and CPu-L after 14 and 28 days of abstinence. RESULTS: AMPH administration led to sensitisation towards AMPH's rewarding effects, as evidenced by changes in USV. There was a noticeable decrease in kynurenic acid levels and an increase in both taurine and glutamate in the CPu-L, along with an increase in glutamate levels in the Cx, 28 days following the final AMPH injection. CONCLUSIONS: The most significant changes in the tissue levels of glutamate, taurine, and kynurenic acid were seen in the CPu-L 28 days after the last dose of AMPH. The emergence of these changes exclusively after 28 days suggests that the processes initiated by AMPH use and subsequent abstinence take time to become apparent and may be enduring. This could contribute to the incubation of craving and the risk of relapse. Developing pharmacological strategies to counteract the reduction in kynurenic acid induced by psychostimulants may provide new avenues for therapy development.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ácido Glutâmico , Ácido Cinurênico , Transmissão Sináptica , Taurina , Ácido Cinurênico/metabolismo , Animais , Masculino , Anfetamina/farmacologia , Ácido Glutâmico/metabolismo , Ratos , Taurina/metabolismo , Taurina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Ratos Wistar , Fatores de Tempo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Recompensa
20.
Arq. neuropsiquiatr ; 69(2b): 360-364, 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-588098

RESUMO

Pilocarpine-induced seizures can be mediated by increases in oxidative stress and by cerebral amino acid changes. The present research suggests that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures in cellular level. The objective of the present study was to evaluate the lipoic acid (LA) effects in glutamate and taurine contents in rat hippocampus after pilocarpine-induced seizures. Wistar rats were treated intraperitoneally (i.p.) with 0.9 percent saline (Control), pilocarpine (400 mg/kg, Pilocarpine), LA (10 mg/kg, LA), and the association of LA (10 mg/kg) plus pilocarpine (400 mg/kg), that was injected 30 min before of administration of LA (LA plus pilocarpine). Animals were observed during 24 h. The amino acid concentrations were measured using high-performance liquid chromatograph (HPLC). In pilocarpine group, it was observed a significant increase in glutamate content (37 percent) and a decrease in taurine level (18 percent) in rat hippocampus, when compared to control group. Antioxidant pretreatment significantly reduced the glutamate level (28 percent) and augmented taurine content (32 percent) in rat hippocampus, when compared to pilocarpine group. Our findings strongly support amino acid changes in hippocampus during seizures induced by pilocarpine, and suggest that glutamate-induced brain damage plays a crucial role in pathogenic consequences of seizures, and imply that strong protective effect could be achieved using lipoic acid through the release or decrease in metabolization rate of taurine amino acid during seizures.


As convulsões induzidas pela pilocarpina podem ser mediadas através do aumento do estresse oxidativo cerebral e das alterações na concentração dos aminoácidos. O presente estudo sugere que compostos antioxidantes podem produzir neuroproteção contra a neurotoxicidade em nível celular causada pelas convulsões. O objetivo deste estudo foi avaliar os efeitos do ácido lipóico (AL) no conteúdo de glutamato e taurina no hipocampo de ratos durante convulsões induzidas por pilocarpina. Ratos Wistar foram tratados por via intraperitoneal com solução salina 0,9 por cento (controle), pilocarpina (400 mg/kg, pilocarpina), AL (10 mg/kg) e com a associação de AL (10 mg/kg); 30 min após com pilocarpina (400 mg/kg), que foi injetada 30 min após a administração de AL (AL + pilocarpina). Os animais foram observados durante 24 horas. As concentrações de aminoácidos foram determinadas por HPLC. No hipocampo dos ratos do grupo pilocarpina foi observado um aumento significativo de 37 por cento na concentração de glutamato e uma diminuição de 18 por cento no nível de taurina, quando comparado ao grupo controle. O pré-tratamento com o antioxidante reduziu significativamente o nível de glutamato em 28 por cento e aumentou em 32 por cento os níveis de taurina no hipocampo dos ratos, quando comparado ao grupo pilocarpina. Nossos resultados sugerem que ocorrem alterações na concentração dos aminoácidos no hipocampo de ratos durante as convulsões induzidas por pilocarpina, e que o glutamato pode desempenhar um papel crucial na fisiopatologia das convulsões, e que o efeito protetor poderia ser alcançado com pré-tratamento com ácido lipóico, provavelmente pelo aumento da liberação ou redução da taxa de metabolização dos aminoácidos durante as convulsões.


Assuntos
Animais , Masculino , Ratos , Antioxidantes/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Convulsões/metabolismo , Taurina/metabolismo , Ácido Tióctico/farmacologia , Cromatografia Líquida de Alta Pressão , Hipocampo/química , Pilocarpina , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA