RESUMO
Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.
Assuntos
DNA Polimerase I , Complexo Shelterina , Proteínas de Ligação a Telômeros , Telômero , Humanos , Microscopia Crioeletrônica , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , DNA Primase/genética , Modelos Moleculares , Fosforilação , Complexo Shelterina/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismoRESUMO
Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.
Assuntos
Envelhecimento , Metilação de DNA , Telomerase , Telomerase/metabolismo , Telomerase/genética , Humanos , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Senescência Celular , Regiões Promotoras Genéticas , DNA Metiltransferase 3B , Encéfalo/metabolismo , Telômero/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Fator de Transcrição AP-1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , NeurogêneseRESUMO
The escalating social and economic burden of an aging world population has placed aging research at center stage. The hallmarks of aging comprise diverse molecular mechanisms and cellular systems that are interrelated and act in concert to drive the aging process. Here, through the lens of telomere biology, we examine how telomere dysfunction may amplify or drive molecular biological processes underlying each hallmark of aging and contribute to development of age-related diseases such as neurodegeneration and cancer. The intimate link of telomeres to aging hallmarks informs preventive and therapeutic interventions designed to attenuate aging itself and reduce the incidence of age-associated diseases.
Assuntos
Envelhecimento/genética , Saúde , Telômero/genética , Animais , Senescência Celular/genética , Instabilidade Genômica , Humanos , Telomerase/metabolismoRESUMO
We have known for decades that long noncoding RNAs (lncRNAs) can play essential functions across most forms of life. The maintenance of chromosome length requires an lncRNA (e.g., hTERC) and two lncRNAs in the ribosome that are required for protein synthesis. Thus, lncRNAs can represent powerful RNA machines. More recently, it has become clear that mammalian genomes encode thousands more lncRNAs. Thus, we raise the question: Which, if any, of these lncRNAs could also represent RNA-based machines? Here we synthesize studies that are beginning to address this question by investigating fundamental properties of lncRNA genes, revealing new insights into the RNA structure-function relationship, determining cis- and trans-acting lncRNAs in vivo, and generating new developments in high-throughput screening used to identify functional lncRNAs. Overall, these findings provide a context toward understanding the molecular grammar underlying lncRNA biology.
Assuntos
Genoma , Biossíntese de Proteínas , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA/genética , Telomerase/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Telomerase/metabolismo , Homeostase do Telômero , Transcrição GênicaRESUMO
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Assuntos
Cromatina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Cromossomos/metabolismo , DNA/metabolismo , Humanos , Telomerase/metabolismoRESUMO
Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.
Assuntos
Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Teorema de Bayes , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunoprecipitação , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.
Assuntos
DNA/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Tetrahymena thermophila/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , DNA/química , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Complexo Shelterina , Fosfatase Ácida Resistente a Tartarato/metabolismo , Telomerase/química , Telômero/química , Proteínas de Ligação a Telômeros , Tetrahymena thermophila/enzimologiaRESUMO
Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.
Assuntos
RNA não Traduzido/química , Telomerase/metabolismo , Biocatálise , Linhagem Celular , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/química , Telomerase/genética , Telômero/metabolismoRESUMO
Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.
Assuntos
Proteínas de Ligação a DNA/química , Simulação de Acoplamento Molecular , Proteínas de Saccharomyces cerevisiae/química , Telomerase/química , Homeostase do Telômero , Proteínas de Ligação a Telômeros/química , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismoRESUMO
Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.
Assuntos
Replicação do DNA , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Telomerase/metabolismo , Telômero/enzimologia , Animais , Domínio Catalítico , DNA de Cadeia Simples/genética , Regulação da Expressão Gênica , Humanos , Repetições de Microssatélites , Conformação de Ácido Nucleico , Oxytricha/genética , Oxytricha/metabolismo , RNA/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telômero/química , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismoRESUMO
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Assuntos
Regulação da Expressão Gênica , Homeostase , Mutação , Neoplasias/genética , Neoplasias/patologia , Telomerase/metabolismo , Telômero/fisiologia , Humanos , Neoplasias/metabolismoRESUMO
Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.
Assuntos
DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , RNA Longo não Codificante/metabolismo , Telômero/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Motivos de Nucleotídeos , Células-Tronco/metabolismo , Telomerase/metabolismo , Proteína Nuclear Ligada ao XRESUMO
Premature telomere shortening or telomere instability is associated with a group of rare and heterogeneous diseases collectively known as telomere biology disorders (TBDs). Here we identified two unrelated individuals with clinical manifestations of TBDs and short telomeres associated with the identical monoallelic variant c.767A>G; Y256C in RPA2 Although the replication protein A2 (RPA2) mutant did not affect ssDNA binding and G-quadruplex-unfolding properties of RPA, the mutation reduced the affinity of RPA2 with the ubiquitin ligase RFWD3 and reduced RPA ubiquitination. Using engineered knock-in cell lines, we found an accumulation of RPA at telomeres that did not trigger ATR activation but caused short and dysfunctional telomeres. Finally, both patients acquired, in a subset of blood cells, somatic genetic rescue events in either POT1 genes or TERT promoters known to counteract the accelerated telomere shortening. Collectively, our study indicates that variants in RPA2 represent a novel genetic cause of TBDs. Our results further support the fundamental role of the RPA complex in regulating telomere length and stability in humans.
Assuntos
Proteína de Replicação A , Proteínas de Ligação a Telômeros , Telômero , Humanos , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Heterozigoto , Masculino , Feminino , Complexo Shelterina , Encurtamento do Telômero/genética , Mutação , Telomerase/genética , Telomerase/metabolismo , Ubiquitinação/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Salivary gland homeostasis and regeneration after radiotherapy depend significantly on progenitor cells. However, the lineage of submandibular gland (SMG) progenitor cells remains less defined compared with other normal organs. Here, using a mouse strain expressing regulated CreERT2 recombinase from the endogenous Tert locus, we identify a distinct telomerase-expressing (TertHigh) cell population located in the ductal region of the adult SMG. These TertHigh cells contribute to ductal cell generation during SMG homeostasis and to both ductal and acinar cell renewal 1 year after radiotherapy. TertHigh cells maintain self-renewal capacity during in vitro culture, exhibit resistance to radiation damage, and demonstrate enhanced proliferative activity after radiation exposure. Similarly, primary human SMG cells with high Tert expression display enhanced cell survival after radiotherapy, and CRISPR-activated Tert in human SMG spheres increases proliferation after radiation. RNA sequencing reveals upregulation of "cell cycling" and "oxidative stress response" pathways in TertHigh cells following radiation. Mechanistically, Tert appears to modulate cell survival through ROS levels in SMG spheres following radiation damage. Our findings highlight the significance of TertHigh cells in salivary gland biology, providing insights into their response to radiotherapy and into their use as a potential target for enhancing salivary gland regeneration after radiotherapy.
Assuntos
Homeostase , Regeneração , Telomerase , Telomerase/metabolismo , Telomerase/genética , Animais , Homeostase/genética , Homeostase/efeitos da radiação , Camundongos , Regeneração/efeitos da radiação , Regeneração/genética , Humanos , Glândulas Salivares/efeitos da radiação , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Proliferação de Células/efeitos da radiação , Proliferação de Células/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Glândula Submandibular/efeitos da radiação , Glândula Submandibular/metabolismo , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Células-Tronco/citologia , Radioterapia/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células CultivadasRESUMO
Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end.
Assuntos
Telomerase/metabolismo , Telômero/enzimologia , Transporte Ativo do Núcleo Celular , Proteínas de Bactérias , Proteína 9 Associada à CRISPR , Linhagem Celular , Núcleo Celular/enzimologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Corpos Enovelados/enzimologia , Endonucleases , Edição de Genes , Genoma Humano , Células HeLa , Humanos , Imageamento Tridimensional , Domínios Proteicos , Fase S , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Complexo Shelterina , Telomerase/química , Telômero/química , Homeostase do Telômero , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismoRESUMO
Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.
Assuntos
Ribonuclease P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/enzimologia , Telomerase/química , Endorribonucleases/química , Endorribonucleases/metabolismo , Imunoprecipitação , Espectrometria de Massas , Modelos Moleculares , RNA Fúngico/metabolismo , Ribonuclease P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismoRESUMO
It has been known for decades that telomerase extends the 3' end of linear eukaryotic chromosomes and dictates the telomeric repeat sequence based on the template in its RNA. However, telomerase does not mitigate sequence loss at the 5' ends of chromosomes, which results from lagging strand DNA synthesis and nucleolytic processing. Therefore, a second enzyme is needed to keep telomeres intact: DNA polymerase α/Primase bound to Ctc1-Stn1-Ten1 (CST). CST-Polα/Primase maintains telomeres through a fill-in reaction that replenishes the lost sequences at the 5' ends. CST not only serves to maintain telomeres but also determines their length by keeping telomerase from overelongating telomeres. Here we discuss recent data on the evolution, structure, function, and recruitment of mammalian CST-Polα/Primase, highlighting the role of this complex and telomere length control in human disease.
Assuntos
Telomerase , Animais , Humanos , Telomerase/metabolismo , DNA Primase/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Homeostase do Telômero , Replicação do DNA , Mamíferos/genéticaRESUMO
VIDEO ABSTRACT: Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here, we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de-novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2-3 months. As a proof of principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high-throughput manner and for investigating candidates arising from human genome-wide studies.
Assuntos
Peixes Listrados/fisiologia , Envelhecimento , Animais , Sequência de Bases , Sistemas CRISPR-Cas , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Técnicas Genéticas , Humanos , Peixes Listrados/genética , Masculino , Modelos Animais , Dados de Sequência Molecular , Telomerase/genética , Telomerase/metabolismo , Vertebrados/fisiologiaRESUMO
Telomerase is required for long-term telomere maintenance and protection. Using single budding yeast mother cell analyses we found that, even early after telomerase inactivation (ETI), yeast mother cells show transient DNA damage response (DDR) episodes, stochastically altered cell-cycle dynamics, and accelerated mother cell aging. The acceleration of ETI mother cell aging was not explained by increased reactive oxygen species (ROS), Sir protein perturbation, or deprotected telomeres. ETI phenotypes occurred well before the population senescence caused late after telomerase inactivation (LTI). They were morphologically distinct from LTI senescence, were genetically uncoupled from telomere length, and were rescued by elevating dNTP pools. Our combined genetic and single-cell analyses show that, well before critical telomere shortening, telomerase is continuously required to respond to transient DNA replication stress in mother cells and that a lack of telomerase accelerates otherwise normal aging.