Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(10): 5298-5309, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094174

RESUMO

The 20S core particle (CP) proteasome is a molecular assembly catalyzing the degradation of misfolded proteins or proteins no longer required for function. It is composed of four stacked heptameric rings that form a barrel-like structure, sequestering proteolytic sites inside its lumen. Proteasome function is regulated by gates derived from the termini of α-rings and through binding of regulatory particles (RPs) to one or both ends of the barrel. The CP is dynamic, with an extensive allosteric pathway extending from one end of the molecule to catalytic sites in its center. Here, using methyl-transverse relaxation optimized spectroscopy (TROSY)-based NMR optimized for studies of high-molecular-weight complexes, we evaluate whether the pathway extends over the entire 150-Å length of the molecule. By exploiting a number of different labeling schemes, the two halves of the molecule can be distinguished, so that the effects of 11S RP binding, or the introduction of gate or allosteric pathway mutations at one end of the barrel can be evaluated at the distal end. Our results establish that while 11S binding and the introduction of key mutations affect each half of the CP allosterically, they do not further couple opposite ends of the molecule. This may have implications for the function of so-called "hybrid" proteasomes where each end of the CP is bound with a different regulator, allowing the CP to be responsive to both RPs simultaneously. The methodology presented introduces a general NMR strategy for dissecting pathways of communication in homo-oligomeric molecular machines.


Assuntos
Proteínas Arqueais/química , Complexo de Endopeptidases do Proteassoma/química , Thermoplasma/enzimologia , Regulação Alostérica , Proteínas Arqueais/genética , Domínio Catalítico/genética , Espectroscopia de Ressonância Magnética/métodos , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Thermoplasma/genética
2.
Proc Natl Acad Sci U S A ; 114(46): E9846-E9854, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087330

RESUMO

The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of substrates that might otherwise enter the proteasome. Previously, we showed that the N-terminal residues of the α-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that, on average, two of the seven termini are localized inside the lumen of the proteasome, thereby plugging the entry pore and functioning as a gate. However, the mechanism of gating remains unclear. Using solution NMR and a labeling procedure in which a series of mixed proteasome rings are prepared such that the percentage of gate-containing subunits is varied, we address the energetics of gating and establish whether gating is a cooperative process involving the concerted action of residues from more than a single protomer. Our results establish that the intrinsic probability of a gate entering the lumen favors the in state by close to 20-fold, that entry of each gate is noncooperative, with the number of gates that can be accommodated inside the lumen a function of the substrate entry pore size and the bulkiness of the gating residues. Insight into the origin of the high affinity for the in state is obtained from spin-relaxation experiments. More generally, our approach provides an avenue for dissecting interactions of individual protomers in homo-oligomeric complexes.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Thermoplasma/enzimologia , Proteínas Arqueais/genética , Modelos Moleculares , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Marcadores de Spin , Thermoplasma/química , Thermoplasma/genética , Thermoplasma/metabolismo
3.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824437

RESUMO

Mevalonate 3-kinase plays a key role in a recently discovered modified mevalonate pathway specific to thermophilic archaea of the order Thermoplasmatales The enzyme is homologous to diphosphomevalonate decarboxylase, which is involved in the widely distributed classical mevalonate pathway, and to phosphomevalonate decarboxylase, which is possessed by halophilic archaea and some Chloroflexi bacteria. Mevalonate 3-kinase catalyzes the ATP-dependent 3-phosphorylation of mevalonate but does not catalyze the subsequent decarboxylation as related decarboxylases do. In this study, a substrate-interacting glutamate residue of Thermoplasma acidophilum mevalonate 3-kinase was replaced by smaller amino acids, including its counterparts in diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, with the aim of altering substrate specificity. These single amino acid mutations resulted in the conversion of mevalonate 3-kinase into 5-phosphomevalonate 3-kinase, which can synthesize 3,5-bisphosphomevalonate from 5-phosphomevalonate. The mutants catalyzing the hitherto undiscovered reaction enabled the construction of an artificial mevalonate pathway in Escherichia coli cells, as was demonstrated by the accumulation of lycopene, a red carotenoid pigment.IMPORTANCE Isoprenoid is the largest family of natural compounds, including important bioactive molecules such as vitamins, hormones, and natural medicines. The mevalonate pathway is a target for metabolic engineering because it supplies precursors for isoprenoid biosynthesis. Mevalonate 3-kinase is an enzyme involved in the modified mevalonate pathway specific to limited species of thermophilic archaea. Replacement of a single amino acid residue in the active site of the enzyme changed its substrate preference and allowed the mutant enzymes to catalyze a previously undiscovered reaction. Using the genes encoding the mutant enzymes and other archaeal enzymes, we constructed an artificial mevalonate pathway, which can produce the precursor of isoprenoid through an unexplored route, in bacterial cells.


Assuntos
Aminoácidos/química , Proteínas Arqueais/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Thermoplasma/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Especificidade por Substrato , Thermoplasma/enzimologia
4.
Proc Natl Acad Sci U S A ; 113(29): E4190-9, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27402735

RESUMO

The AAA+ (ATPases associated with a variety of cellular activities) enzymes play critical roles in a variety of homeostatic processes in all kingdoms of life. Valosin-containing protein-like ATPase of Thermoplasma acidophilum (VAT), the archaeal homolog of the ubiquitous AAA+ protein Cdc48/p97, functions in concert with the 20S proteasome by unfolding substrates and passing them on for degradation. Here, we present electron cryomicroscopy (cryo-EM) maps showing that VAT undergoes large conformational rearrangements during its ATP hydrolysis cycle that differ dramatically from the conformational states observed for Cdc48/p97. We validate key features of the model with biochemical and solution methyl-transverse relaxation optimized spectroscopY (TROSY) NMR experiments and suggest a mechanism for coupling the energy of nucleotide hydrolysis to substrate unfolding. These findings illustrate the unique complementarity between cryo-EM and solution NMR for studies of molecular machines, showing that the structural properties of VAT, as well as the population distributions of conformers, are similar in the frozen specimens used for cryo-EM and in the solution phase where NMR spectra are recorded.


Assuntos
Proteínas Arqueais/química , Proteína com Valosina/química , Proteínas Arqueais/genética , Microscopia Crioeletrônica , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Thermoplasma/enzimologia , Thermoplasma/genética , Proteína com Valosina/genética
5.
Genes Cells ; 22(7): 646-661, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28557347

RESUMO

In organisms with circular chromosomes, such as bacteria and archaea, an odd number of homologous recombination events can generate a chromosome dimer. Such chromosome dimers cannot be segregated unless they are converted to monomers before cell division. In Escherichia coli, dimer-to-monomer conversion is mediated by the paralogous XerC and XerD recombinases at a specific dif site in the replication termination region. Dimer resolution requires the highly conserved cell division protein/chromosome translocase FtsK, and this site-specific chromosome resolution system is present or predicted in most bacteria. However, most archaea have only XerA, a homologue of the bacterial XerC/D proteins, but no homologues of FtsK. In addition, the molecular mechanism of XerA-mediated chromosome resolution in archaea has been less thoroughly elucidated than those of the corresponding bacterial systems. In this study, we identified two XerA-binding sites (dif1 and dif2) in the Thermoplasma acidophilum chromosome. In vitro site-specific recombination assays showed that dif2, but not dif1, serves as a target site for XerA-mediated chromosome resolution. Mutational analysis indicated that not only the core consensus sequence of dif2, but also its flanking regions play important roles in the recognition and recombination reactions mediated by XerA.


Assuntos
DNA Arqueal/genética , Recombinases/metabolismo , Recombinação Genética , Thermoplasma/genética , Tirosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Genoma Bacteriano , Técnicas In Vitro , Mutação , Plasmídeos , Especificidade por Substrato , Thermoplasma/enzimologia , Thermoplasma/crescimento & desenvolvimento
6.
Nucleic Acids Res ; 44(4): 1894-908, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26721388

RESUMO

Archaeosine (G(+)), which is found only at position 15 in many archaeal tRNA, is formed by two steps, the replacement of the guanine base with preQ0 by archaeosine tRNA-guanine transglycosylase (ArcTGT) and the subsequent modification of preQ0 to G(+) by archaeosine synthase. However, tRNA(Leu) from Thermoplasma acidophilum, a thermo-acidophilic archaeon, exceptionally has two G(+)13 and G(+)15 modifications. In this study, we focused on the biosynthesis mechanism of G(+)13 and G(+)15 modifications in this tRNA(Leu). Purified ArcTGT from Pyrococcus horikoshii, for which the tRNA recognition mechanism and structure were previously characterized, exchanged only the G15 base in a tRNA(Leu) transcript with (14)C-guanine. In contrast, T. acidophilum cell extract exchanged both G13 and G15 bases. Because T. acidophilum ArcTGT could not be expressed as a soluble protein in Escherichia coli, we employed an expression system using another thermophilic archaeon, Thermococcus kodakarensis. The arcTGT gene in T. kodakarensis was disrupted, complemented with the T. acidophilum arcTGT gene, and tRNA(Leu) variants were expressed. Mass spectrometry analysis of purified tRNA(Leu) variants revealed the modifications of G(+)13 and G(+)15 in the wild-type tRNA(Leu). Thus, T. acidophilum ArcTGT has a multisite specificity and is responsible for the formation of both G(+)13 and G(+)15 modifications.


Assuntos
Glicosídeo Hidrolases/genética , Complexos Multienzimáticos/genética , RNA de Transferência/genética , Thermoplasma/enzimologia , Transferases/genética , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Pyrococcus horikoshii/enzimologia , Thermoplasma/genética , Transferases/química , Transferases/metabolismo
7.
Archaea ; 2016: 8734894, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27799846

RESUMO

The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeon Thermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases of Methanocaldococcus jannaschii (MjaOgg) and Sulfolobus solfataricus (SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed in Escherichia coli and purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encoding TVG_RS00315 is a member of the Ogg2 family of T. volcanium.


Assuntos
DNA Glicosilases/metabolismo , DNA/metabolismo , Guanina/análogos & derivados , Thermoplasma/enzimologia , DNA Glicosilases/química , DNA Glicosilases/genética , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanina/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura , Thermoplasma/genética
8.
Mol Cell ; 32(2): 259-75, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951093

RESUMO

Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family.


Assuntos
Proteínas Arqueais/química , Complexos Multiproteicos/química , Proteínas Quinases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Transporte/química , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mathanococcus/genética , Mathanococcus/metabolismo , Modelos Moleculares , Complexos Multiproteicos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Homologia de Sequência de Aminoácidos , Telômero/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo , Transcrição Gênica
9.
J Biol Chem ; 289(6): 3613-24, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24338567

RESUMO

Recognition and removal of DNA damages is essential for cellular and organismal viability. Nucleotide excision repair (NER) is the sole mechanism in humans for the repair of carcinogenic UV irradiation-induced photoproducts in the DNA, such as cyclobutane pyrimidine dimers. The broad substrate versatility of NER further includes, among others, various bulky DNA adducts. It has been proposed that the 5'-3' helicase XPD (xeroderma pigmentosum group D) protein plays a decisive role in damage verification. However, despite recent advances such as the identification of a DNA-binding channel and central pore in the protein, through which the DNA is threaded, as well as a dedicated lesion recognition pocket near the pore, the exact process of target site recognition and verification in eukaryotic NER still remained elusive. Our single molecule analysis by atomic force microscopy reveals for the first time that XPD utilizes different recognition strategies to verify structurally diverse lesions. Bulky fluorescein damage is preferentially detected on the translocated strand, whereas the opposite strand preference is observed for a cyclobutane pyrimidine dimer lesion. Both states, however, lead to similar conformational changes in the resulting specific complexes, indicating a merge to a "final" verification state, which may then trigger the recruitment of further NER proteins.


Assuntos
Proteínas Arqueais/metabolismo , Dano ao DNA , Reparo do DNA/fisiologia , DNA Arqueal/metabolismo , Thermoplasma/enzimologia , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , DNA Arqueal/química , DNA Arqueal/genética , Humanos , Dímeros de Pirimidina/química , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Thermoplasma/genética , Proteína Grupo D do Xeroderma Pigmentoso/química , Proteína Grupo D do Xeroderma Pigmentoso/genética
10.
Appl Environ Microbiol ; 81(15): 4920-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979886

RESUMO

Two glucoamylase-like genes, TVN1315 and Ta0286, from the archaea Thermoplasma volcanium and T. acidophilum, respectively, were expressed in Escherichia coli. The gene products, TVN1315 and Ta0286, were identified as archaeal trehalases. These trehalases belong to the CAZy database family GH15, although they have putative (α/α)6 barrel catalytic domain structures similar to those of GH37 and GH65 family trehalases from other organisms. These newly identified trehalases function within a narrow range of acidic pH values (pH 3.2 to 4.0) and at high temperatures (50 to 60°C), and these enzymes display Km values for trehalose higher than those observed for typical trehalases. These enzymes were inhibited by validamycin A; however, the inhibition constants (Ki) were higher than those of other trehalases. Three TVN1315 mutants, corresponding to E408Q, E571Q, and E408Q/E571Q mutations, showed reduced activity, suggesting that these two glutamic acid residues are involved in trehalase catalysis in a manner similar to that of glucoamylase. To date, TVN1315 and Ta0286 are the first archaeal trehalases to be identified, and this is the first report of the heterologous expression of GH15 family trehalases. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 family enzymes as well as glycoside hydrolase family enzymes; additionally, these enzymes provide insight into archaeal trehalose metabolism.


Assuntos
Thermoplasma/enzimologia , Trealase/química , Trealase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Domínio Catalítico , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Inositol/análogos & derivados , Inositol/metabolismo , Cinética , Dados de Sequência Molecular , Peso Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência , Temperatura , Thermoplasma/genética , Trealase/genética , Trealose/metabolismo
11.
Proc Natl Acad Sci U S A ; 109(50): E3454-62, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23150576

RESUMO

Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is central to this process. CP function is controlled by activator complexes that bind 75 Å away from sites catalyzing proteolysis, and biochemical data are consistent with an allosteric mechanism by which binding is communicated to distal active sites. However, little structural evidence has emerged from the high-resolution images of the CP. Using methyl TROSY NMR spectroscopy, we demonstrate that in solution, the CP interconverts between multiple conformations whose relative populations are shifted on binding of the 11S activator or mutation of residues that contact activators. These conformers differ in contiguous regions of structure that connect activator binding to the CP active sites, and changes in their populations lead to differences in substrate proteolysis patterns. Moreover, various active site modifications result in conformational changes to the activator binding site by modulating the relative populations of these same CP conformers. This distribution is also affected by the binding of a small-molecule allosteric inhibitor of proteolysis, chloroquine, suggesting an important avenue in the development of therapeutics for proteasome inhibition.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação Alostérica , Sítio Alostérico/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Cloroquina/metabolismo , Endopeptidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo
12.
RNA Biol ; 11(12): 1568-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25616408

RESUMO

The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.


Assuntos
Nucleosídeos/análise , Oligonucleotídeos/análise , Processamento Pós-Transcricional do RNA , RNA Mensageiro/análise , RNA Ribossômico 23S/análise , RNA Interferente Pequeno/análise , RNA não Traduzido/análise , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo
13.
Biol Pharm Bull ; 37(3): 481-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24583867

RESUMO

The genome of the facultative anaerobic thermoacidophilic archaeon Thermoplasma volcanium contains the open-reading frames (ORFs) tvsod and tvogg, which are predicted to encode a putative superoxide dismutase and an 8-oxoguanine DNA glycosylase, respectively. Tvsod is immediately upstream of tvogg, and these two ORFs are aligned in a head-to-tail manner in a single operon. A previous study showed that T. volcanium contains an ORF (TVN0292) encoding the ferric uptake regulator (Fur) and that the T. volcanium Fur protein (TvFur) binds to its own promoter in a metal-dependent manner in vitro. Here, we demonstrated that TvFur also binds to the tvsod-tvogg promoter and determined the TvFur-binding sequences in the tvsod-tvogg promoter by DNaseI footprinting analysis. These results suggest that Fur is required for resistance against reactive oxygen species in this facultative anaerobic archaeon.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Óperon , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Thermoplasma/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas Repressoras/metabolismo , Thermoplasma/metabolismo
14.
Biotechnol Lett ; 36(4): 789-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24322767

RESUMO

A new method is presented for synthesizing arbutin glycosides using α-glucosidase (AglA) from Thermoplasma acidophilum and its glycosynthase mutant. An α-glycosynthase was constructed by substituting the catalytic nucleophile with the non-nucleophile glycine. Enzyme activity was then recovered using an external nucleophile. The transglycosylation reaction of AglA using maltose as a donor and arbutin as an acceptor produced arbutin coupled with a glucose moiety. The products were isolated and further analysed using preparative recycling HPLC. Arbutin glycosides linked to C-3, C-4, and C-6 were identified using NMR. The transglycosylation products of AglA were used as substrates for the enzyme reaction, which were hydrolyzed back again and reduced final yields. The glycosynthase mutant produced one main arbutin glycoside linked to C-4 with a yield of 38 % without further observed hydrolysis.


Assuntos
Arbutina/metabolismo , Glicoconjugados/metabolismo , Thermoplasma/enzimologia , alfa-Glucosidases/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Maltose/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Thermoplasma/genética , alfa-Glucosidases/genética , alfa-Glucosidases/isolamento & purificação
15.
J Biol Chem ; 287(16): 12966-74, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22374996

RESUMO

A gene from the thermophilic archaeon Thermoplasma volcanium encoding an L-threonine dehydrogenase (L-ThrDH) with a predicted amino acid sequence that was remarkably similar to the sequence of UDP-galactose 4-epimerase (GalE) was overexpressed in Escherichia coli, and its product was purified and characterized. The expressed enzyme was moderately thermostable, retaining more than 90% of its activity after incubation for 10 min at up to 70 °C. The catalytic residue was assessed using site-directed mutagenesis, and Tyr(137) was found to be essential for catalysis. To clarify the structural basis of the catalytic mechanism, four different crystal structures were determined using the molecular replacement method: L-ThrDH-NAD(+), L-ThrDH in complex with NAD(+) and pyruvate, Y137F mutant in complex with NAD(+) and L-threonine, and Y137F in complex with NAD(+) and L-3-hydroxynorvaline. Each monomer consisted of a Rossmann-fold domain and a C-terminal catalytic domain, and the fold of the catalytic domain showed notable similarity to that of the GalE-like L-ThrDH from the psychrophilic bacterium Flavobacterium frigidimaris KUC-1. The substrate binding model suggests that the reaction proceeds through abstraction of the ß-hydroxyl hydrogen of L-threonine via direct proton transfer driven by Tyr(137). The factors contributing to the thermostability of T. volcanium L-ThrDH were analyzed by comparing its structure to that of F. frigidimaris L-ThrDH. This comparison showed that the presence of extensive inter- and intrasubunit ion pair networks are likely responsible for the thermostability of T. volcanium L-ThrDH. This is the first description of the molecular basis for the substrate recognition and thermostability of a GalE-like L-ThrDH.


Assuntos
Oxirredutases do Álcool/química , Proteínas Arqueais/química , Thermoplasma/enzimologia , Treonina/metabolismo , UDPglucose 4-Epimerase/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia , Escherichia coli/genética , Flavobacterium/enzimologia , Mutagênese Sítio-Dirigida , NAD/química , NAD/metabolismo , Especificidade por Substrato/fisiologia , Thermoplasma/genética , Treonina/química , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
16.
Extremophiles ; 17(1): 29-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23104165

RESUMO

γ-Glutamyl transpeptidase of a thermo-acidophilic archaeon Picrophilus torridus was cloned and expressed using E. coli Rosetta-pET 51b(+) expression system. The enzyme was expressed at 37 °C/200 rpm with γ-GT production of 1.99 U/mg protein after 3 h of IPTG induction. It was improved nearby 10-fold corresponding to 18.92 U/mg protein in the presence of 2 % hexadecane. The enzyme was purified by Ni(2+)-NTA with a purification fold of 3.6 and recovery of 61 %. It was synthesized as a precursor heterodimeric protein of 47 kDa with two subunits of 30 kDa and 17 kDa, respectively, as revealed by SDS-PAGE and western blot. The enzyme possesses hydrolase activity with optima at pH 7.0 and 55 °C. It was thermostable with a t (1/2) of 1 h at 50 °C and 30 min at 60 °C, and retained 100 % activity at 45 °C even after 24 h. It was inhibited by azaserine and DON and PMSF. Ptγ-GT shared 37 % sequence identity and 53 % homology with an extremophile γ-GT from Thermoplasma acidophilum. Functional residues identified by in silico approaches were further validated by site-directed mutagenesis where Tyr327 mutated by Asn327 introduced significant transpeptidase activity.


Assuntos
Proteínas Arqueais , Thermoplasmales/enzimologia , Thermoplasmales/genética , gama-Glutamiltransferase , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Sítios de Ligação , Escherichia coli/enzimologia , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Thermoplasma/enzimologia , Thermoplasma/genética , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/isolamento & purificação , gama-Glutamiltransferase/metabolismo
17.
Appl Environ Microbiol ; 78(11): 4051-6, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22447586

RESUMO

The diversity of protozoan-associated methanogens in cattle was investigated using five universal archaeal small-subunit (SSU) rRNA gene primer sets. Methanobrevibacter spp. and rumen cluster C (distantly related to Thermoplasma spp.) were predominant. Significant differences in species composition among libraries indicate that some primers used previously to characterize rumen methanogens exhibit biased amplification.


Assuntos
Archaea/genética , Archaea/isolamento & purificação , Primers do DNA , Ecossistema , Rúmen/microbiologia , Rúmen/parasitologia , Animais , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bovinos , Methanobrevibacter/genética , Methanobrevibacter/crescimento & desenvolvimento , Methanobrevibacter/isolamento & purificação , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , Análise de Sequência de DNA , Thermoplasma/genética , Thermoplasma/crescimento & desenvolvimento , Thermoplasma/isolamento & purificação
18.
Extremophiles ; 16(3): 447-54, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22481639

RESUMO

Thermoplasma acidophilum utilizes L-rhamnose as a sole carbon source. To determine the metabolic pathway of L-rhamnose in Archaea, we identified and characterized L-rhamnose dehydrogenase (RhaD) in T. acidophilum. Ta0747P gene, which encodes the putative T. acidophilum RhaD (Ta_RhaD) enzyme belonging to the short-chain dehydrogenase/reductase family, was expressed in E. coli as an active enzyme catalyzing the oxidation of L-rhamnose to L-rhamnono-1,4-lactone. Analysis of catalytic properties revealed that Ta_RhaD oxidized L-rhamnose, L-lyxose, and L-mannose using only NADP(+) as a cofactor, which is different from NAD(+)/NADP(+)-specific bacterial RhaDs and NAD(+)-specific eukaryal RhaDs. Ta_RhaD showed the highest activity toward L-rhamnose at 60 °C and pH 7. The K (m) and k (cat) values were 0.46 mM, 1,341.3 min(-1) for L-rhamnose and 0.1 mM, 1,027.2 min(-1) for NADP(+), respectively. Phylogenetic analysis indicated that branched lineages of archaeal RhaD are quite distinct from those of Bacteria and Eukarya. This is the first report on the identification and characterization of NADP(+)-specific RhaD.


Assuntos
Proteínas Arqueais/química , Desidrogenases de Carboidrato/química , NADP/química , Thermoplasma/enzimologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desidrogenases de Carboidrato/genética , Desidrogenases de Carboidrato/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , NADP/genética , NADP/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ramnose/química , Ramnose/genética , Ramnose/metabolismo , Thermoplasma/genética
19.
J Bacteriol ; 193(17): 4495-508, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21665970

RESUMO

Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ∼15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.


Assuntos
Proteínas Arqueais/metabolismo , Reparo do DNA , Thermoplasma/genética , Uracila-DNA Glicosidase/metabolismo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Recombinante , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica em Archaea , Genes Arqueais , Fósforo-Oxigênio Liases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Thermoplasma/enzimologia , Uracila-DNA Glicosidase/genética
20.
J Proteome Res ; 9(9): 4839-50, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20669988

RESUMO

A comparative proteome and transcriptome analysis of Thermoplasma acidophilum cultured under aerobic and anaerobic conditions has been performed. One-thousand twenty-five proteins were identified covering 88% of the cytosolic proteome. Using a label-free quantitation method, we found that approximately one-quarter of the identified proteome (263 proteins) were significantly induced (>2 fold) under anaerobic conditions. Thirty-nine macromolecular complexes were identified, of which 28 were quantified and 15 were regulated under anaerobiosis. In parallel, a whole genome cDNA microarray analysis was performed showing that the expression levels of 445 genes were influenced by the absence of oxygen. Interestingly, more than 40% of the membrane protein-encoding genes (145 out of 335 ORFs) were up- or down-regulated at the mRNA level. Many of these proteins are functionally associated with extracellular protein or peptide degradation or ion and amino acid transport. Comparison of the transcriptome and proteome showed only a weak positive correlation between mRNA and protein expression changes, which is indicative of extensive post-transcriptional regulatory mechanisms in T. acidophilum. Integration of transcriptomics and proteomics data generated hypotheses for physiological adaptations of the cells to anaerobiosis, and the quantitative proteomics data together with quantitative analysis of protein complexes provide a platform for correlation of MS-based proteomics studies with cryo-electron tomography-based visual proteomics approaches.


Assuntos
Proteínas de Bactérias/análise , Oxigênio/metabolismo , Thermoplasma/fisiologia , Aerobiose , Anaerobiose , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/fisiologia , Espectrometria de Massas , Redes e Vias Metabólicas , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/química , Proteômica/métodos , RNA Bacteriano/análise , RNA Mensageiro/análise , Thermoplasma/genética , Thermoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA