Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115879, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157796

RESUMO

Thiram, a typical fungicide pesticide, is widely used in agricultural production. The presence of thiram residues is not only due to over-utilization, but is also primarily attributed to long-term accumulation. However, there is a paucity of information regarding the impact of prolonged utilization of thiram at low doses on the gut microbiota, particularly with respect to gut fungi. Our objective is to explore the effect of thiram on broilers from the perspective of gut microbiota, which includes both bacteria and fungi. We developed a long-term low-dose thiram model to simulate thiram residue and employed 16 S rRNA and ITS gene sequencing to investigate the diversity and profile of gut microbiota between group CC (normal diet) and TC (normal diet supplemented with 5 mg/kg thiram). The results revealed that low doses of thiram had a detrimental effect on broiler's growth performance, resulting in an approximate reduction of 669.33 g in their final body weight at day 45. Our findings indicated that low-dose thiram had a negative impact on the gut bacterial composition, leading to a notable reduction in the abundance of Merdibacter, Paenibacillus, Macrococcus, Fournierella, and Anaeroplasma (p < 0.05) compared to the CC group. Conversely, the relative level of Myroides was significantly increased (p < 0.05) in response to thiram exposure. In gut fungi, thiram significantly enhanced the diversity and richness of gut fungal populations (p < 0.05), as evidenced by the notable increase in alpha indices, i.e. ACE (CC: 346.49 ± 117.27 vs TC: 787.27 ± 379.14, p < 0.05), Chao 1 (CC: 317.63 ± 69.13 vs TC: 504.85 ± 104.50, p < 0.05), Shannon (CC: 1.28 ± 1.19 vs TC: 5.39 ± 2.66, p < 0.05), Simpson (CC: 0.21 ± 0.21 vs TC: 0.78 ± 0.34, p < 0.05). Furthermore, the abundance of Ascomycota, Kickxellomycota, and Glomeromycota were significantly increased (p < 0.05) by exposure to thiram, conversely, the level of Basidiomycota was decreased (p < 0.05) in the TC group compared to the CC group. Overall, this study demonstrated that low doses of thiram induced significant changes in the composition and abundance of gut microbiota in broilers, with more pronounced changes observed in the gut fungal community as compared to the gut bacterial community. Importantly, our findings further emphasize the potential risks associated with low dose thiram exposure and have revealed a novel discovery indicating that significant alterations in gut fungi may serve as the crucial factor contributing to the detrimental effects exerted by thiram residues.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Animais , Tiram/toxicidade , Galinhas/genética , RNA Ribossômico 16S/genética , Fungicidas Industriais/toxicidade , Bactérias/genética
2.
Ecotoxicol Environ Saf ; 275: 116260, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564867

RESUMO

Thiram, a commonly used agricultural insecticide and fungicide, has been found to cause tibial dyschondroplasia (TD) in broilers, leading to substantial economic losses in the poultry industry. In this study, we aimed to investigate the mechanism of action of leucine in mitigating thiram-induced TD and leucine effects on gut microbial diversity. Broiler chickens were randomly divided into five equal groups: control group (standard diet), thiram-induced group (thiram 80 mg/kg from day 3 to day 7), and different concentrations of leucine groups (0.3%, 0.6%, 0.9% leucine from day 8 to day 18). Performance indicator analysis and tibial parameter analysis showed that leucine positively affected thiram-induced TD broilers. Additionally, mRNA expressions and protein levels of HIF-1α/VEGFA and Ihh/PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. The results showed that leucine recovered lameness disorder by downregulating the expression of HIF-1α, VEGFA, and PTHrP while upregulating the expression of Ihh. Moreover, the 16 S rRNA sequencing revealed that the leucine group demonstrated a decrease in the abundance of harmful bacteria compared to the TD group, with an enrichment of beneficial bacteria responsible for producing short-chain fatty acids, including Alistipes, Paludicola, CHKCI002, Lactobacillus, and Erysipelatoclostridium. In summary, the current study suggests that leucine could improve the symptoms of thiram-induced TD and maintain gut microbiota homeostasis.


Assuntos
Microbioma Gastrointestinal , Osteocondrodisplasias , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Galinhas , Leucina , Proteína Relacionada ao Hormônio Paratireóideo , Disbiose
3.
Pestic Biochem Physiol ; 201: 105847, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685209

RESUMO

Thiram, a widely used organic pesticide in agriculture, exhibits both bactericidal and insecticidal effects. However, prolonged exposure to thiram has been linked to bone deformities and cartilage damage, contributing to the development of tibial dyschondroplasia (TD) in broilers and posing a significant threat to global agricultural production. TD, a prevalent nutritional metabolic disease, manifests as clinical symptoms like unstable standing, claudication, and sluggish movement in affected broilers. In recent years, there has been growing recognition of the regulatory role of long non-coding RNA (lncRNA) in tibial cartilage formation among broilers through diverse signaling pathways. This study employs in vitro experimental models, growth performance analysis, and clinical observation to assess broilers' susceptibility to thiram pollution. Transcriptome sequencing analysis revealed a significant elevation in the expression of lncRNA MSTRG.74.1 in both the con group and the thiram-induced in vitro group. The results showed that lncRNA MSTRG.74.1 plays a pivotal role in influencing the proliferation and abnormal differentiation of chondrocytes. This regulation occurs through the negative modulation of apoptotic genes, including Bax, Cytc, Bcl2, Apaf1, and Caspase3, along with genes Atg5, Beclin1, LC3b, and protein p62. Moreover, the overexpression of lncRNA MSTRG.74.1 was found to regulate broiler chondrocyte development by upregulating BNIP3. In summary, this research sheds light on thiram-induced abnormal chondrocyte proliferation in TD broilers, emphasizing the significant regulatory role of the lncRNA MSTRG.74.1-BNIP3 axis, which will contribute to our understanding of the molecular mechanisms underlying TD development in broilers exposed to thiram.


Assuntos
Proliferação de Células , Galinhas , Condrócitos , RNA Longo não Codificante , Tiram , Animais , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tiram/toxicidade , Proliferação de Células/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/patologia , Apoptose/efeitos dos fármacos
4.
Ecotoxicol Environ Saf ; 268: 115689, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37992645

RESUMO

Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.


Assuntos
Osteocondrodisplasias , Tiram , Animais , Tiram/toxicidade , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Galinhas , Condrócitos/patologia , Caspase 9/genética , Coxeadura Animal , Apoptose , Neovascularização Patológica/induzido quimicamente , Proliferação de Células
5.
Ecotoxicol Environ Saf ; 247: 114225, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288636

RESUMO

Thiram is a dithiocarbamate pesticide extensively used as a fungicide to preserve crops and seeds. Long-term exposure to thiram causes potential harm to the health of human beings and animals. So far, most of the researches on thiram focused on erythrocyte toxicity, immune system, kidney damage, and tibial dyschondroplasia; however, there is less data on cardiac toxicity. In this study, we examined cardiac histopathology, inflammatory factors, oxidative stress indicators, and apoptosis markers in the heart of broilers that were exposed to thiram. According to our findings, the continuous exposure to thiram caused pathological changes and abnormal function of myocardial tissues with increased level of inducible nitric oxide synthase (iNOS), inflammatory factors (IL-6, IL-8, TNF-α and NF-κB), and decreased level of anti-inflammatory factor (IL-10). In addition, thiram significantly upregulated the protein expression of cleaved-caspase 3, cleaved-PARP, and caused cardiomyocyte apoptosis. Meanwhile, the expression of heat shock proteins (HSP60, HSP70, HSP90) markedly decreased in the thiram-treated groups. An excessive accumulation of peroxidation products (MDA, H2O2), a decrease in T-AOC, and antioxidant activity enzymes (T-SOD, GST and GPX) were also noticed, all of which led to oxidative stress and activation of Nrf2 signal pathway by up-regulating key target genes (HO-1 and SODs). Thiram-induced metabolites were further identified via non-targeted metabonomic analysis. Correlation analysis revealed eighteen differentially expressed metabolites, closely related to cardiac injury. Importantly, thiram primarily affected the taurine and hypotaurine metabolism, pyrimidine metabolism as well as glycerol metabolism. Collectively, our study suggests that thiram could cause cardiotoxicity by interfering with taurine and hypotaurine metabolism, pyrimidine metabolism, and glycerolipid metabolism, which further induce oxidative stress via triggering Nrf2 signal pathway. This study may provide new evidence for the molecular mechanism of cardiotoxicity caused by thiram and resonate the alarm for animals and workers who have been exposed to thiram for a long time.


Assuntos
Fator 2 Relacionado a NF-E2 , Tiram , Animais , Humanos , Tiram/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Galinhas/metabolismo , Cardiotoxicidade , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Apoptose , Taurina , Pirimidinas/metabolismo
6.
Ecotoxicol Environ Saf ; 245: 114134, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183428

RESUMO

Thiram is a dithiocarbamate pesticide widely used in agriculture as a fungicide for storing grains to prevent fungal diseases. However, its residues have threatened the safety of human beings and the stability of the ecosystem by causing different disease conditions, e.g., tibial dyschondroplasia (TD), which results in a substantial economic loss for the poultry industry. So, the research on TD has a great concern for the industry and the overall GDP of a country. In current study, we investigated whether different concentrations (300, 500, and 700 mg/kg) of sodium butyrate alleviated TD induced under acute thiram exposure by regulating osteogenic gene expression, promoting chondrocyte differentiation, and altering the gut microbial community. According to the findings, sodium butyrate restored clinical symptoms in broilers, improved growth performance, bone density, angiogenesis, and chondrocyte morphology and arrangement. It could activate the signal transduction of the Wnt/ß-catenin pathway, regulate the expression of GSK-3ß and ß-catenin, and further promote the production of osteogenic transcription factors Runx2 and OPN for restoration of lameness. In addition, the 16S rRNA sequencing revealed a significantly different community composition among the groups. The TD group increased the abundance of the harmful bacteria Proteobacteria, Subdoligranulum, and Erysipelatoclostridium. The sodium butyrate enriched many beneficial bacteria, such as Bacteroidetes, Verrucomicrobia, Faecalibacterium, Barnesiella, Rikenella, and Butyricicoccus, etc., especially at the concentration of 500 mg/kg. The mentioned concentration significantly limited the intestinal disorders under thiram exposure, and restored bone metabolism.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Osteocondrodisplasias , Praguicidas , Doenças das Aves Domésticas , Animais , Ácido Butírico/toxicidade , Galinhas/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Disbiose , Ecossistema , Fungicidas Industriais/toxicidade , Glicogênio Sintase Quinase 3 beta , Humanos , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Praguicidas/toxicidade , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo , RNA Ribossômico 16S/genética , Tiram/toxicidade , beta Catenina
7.
Ecotoxicol Environ Saf ; 213: 112059, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33647747

RESUMO

Tibial dyschondroplasia (TD) is a metabolic disease of young poultry that affects bone andcartilage's growth. It mostly occurs in broilers due to thiram toxicity in the feed. In this disease, tibial cartilage is not yet ripe for ossification, but it also results in lameness, death, and moral convictions of commercial poultry due to numerous apoptotic changes on cell level. These changes serve a cardinal role in this situation. Many potential problems indicate that chlorogenic acid (CGA) performs an extensive role in controlling apoptosis's perception. However, the actual role of CGA in TD affected chondrocytes in-vitro is still unidentified. The current study investigates the imperceptible insight of CGA on chondrocyte's apoptosis via B-cell lymphoma 2 (Bcl-2), Bcl-2 associated x-protein (Bax), and Caspase-3 with CD147 signalling. The expression of these markers was investigated by Immunofluorescence, western blot analysis, and reverse transcription-quantitative polymerase chain (RT-qPCR). Chondrocytes from the growth plate of tibia were isolated, cultured, and processed. A sub-lethal thiram (2.5 µg/mL) was used to induce cytotoxicity and then treated with an optimum dose (40 µg/ mL) of CGA. According to the results, thiram distorted chondrocyte cells with enhanced apoptotic rate. But, in case of CGA, high expression of CD147 enhanced cell viability of chondrocytes, accompanied by downregulation of Bax/Caspase-3 signalling with the upregulation of Bcl-2. The first possibility has ruled out in the present study by the observation that the cells apoptosis marker, Caspase-3 showed a significant change in CD147 overexpressing cells. Conversely, immunodepletion of CD147 with enhanced cleavage of Caspase-3, indicating the activation of apoptosis in chondrocytes cells. Therefore, these findings suggest a novel insight about CD147 in thiram induced TD about the regulation of Bcl-2/Bax/Caspase-3 apoptosis-signalling axis.


Assuntos
Basigina/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Animais , Apoptose , Caspase 2 , Caspase 3/metabolismo , Diferenciação Celular , Sobrevivência Celular , Galinhas/metabolismo , Ácido Clorogênico , Condrócitos/metabolismo , Cisteína Endopeptidases , Lâmina de Crescimento/patologia , Osteocondrodisplasias/tratamento farmacológico , Tíbia/patologia , Regulação para Cima , Proteína X Associada a bcl-2/metabolismo
8.
BMC Genomics ; 21(1): 50, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941444

RESUMO

BACKGROUND: The Tibial dyschondroplasia (TD) in fast-growing chickens is mainly caused by improper blood circulation. The exact mechanism underlying angiogenesis and vascularization in tibial growth plate of broiler chickens remains unclear. Therefore, this research attempts to study genes involved in the regulation of angiogenesis in chicken red blood cells. Twenty-four broiler chickens were allotted into a control and thiram (Tetramethyl thiuram disulfide) group. Blood samples were collected on day 2, 6 (8- and 14-days old chickens) and 15 (23 days old chickens). RESULTS: Histopathology and hematoxylin and eosin (H&E) results showed that angiogenesis decreased on the 6th day of the experiment but started to recover on the 15th day of the experiment. Immunohistochemistry (IHC) results confirmed the expressions of integrin alpha-v precursor (ITGAV) and clusterin precursor (CLU). Transcriptome sequencing analysis evaluated 293 differentially expressed genes (DEGs), of which 103 up-regulated genes and 190 down-regulated genes were enriched in the pathways of neuroactive ligand receptor interaction, mitogen-activated protein kinase (MAPK), ribosome, regulation of actin cytoskeleton, focal adhesion, natural killer cell mediated cytotoxicity and the notch signalling pathways. DEGs (n = 20) related to angiogenesis of chicken erythrocytes in the enriched pathways were thromboxane A2 receptor (TBXA2R), interleukin-1 receptor type 1 precursor (IL1R1), ribosomal protein L17 (RPL17), integrin beta-3 precursor (ITGB3), ITGAV, integrin beta-2 precursor (ITGB2), ras-related C3 botulinum toxin substrate 2 (RAC2), integrin alpha-2 (ITGA2), IQ motif containing GTPase activating protein 2 (IQGAP2), ARF GTPase-activating protein (GIT1), proto-oncogene vav (VAV1), integrin alpha-IIb-like (ITGA5), ras-related protein Rap-1b precursor (RAP1B), tyrosine protein kinase Fyn-like (FYN), tyrosine-protein phosphatase non-receptor type 11 (PTPN11), protein patched homolog 1 (PTCH1), nuclear receptor corepressor 2 (NCOR2) and mastermind like protein 3 (MAML3) selected for further confirmation with qPCR. However, commonly DEGs were sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3), ubiquitin-conjugating enzyme E2 R2 (UBE2R2), centriole cilia and spindle-associated protein (CCSAP), coagulation factor XIII A chain protein (F13A1), shroom 2 isoform X6 (SHROOM2), ras GTPase-activating protein 3 (RASA3) and CLU. CONCLUSION: We have found potential therapeutic genes concerned to erythrocytes and blood regulation, which regulated the angiogenesis in thiram induced TD chickens. This study also revealed the potential functions of erythrocytes. 1. Tibial dyschondroplasia (TD) in chickens were more on day 6, which started recovering on day 15. 2. The enriched pathway observed in TD chickens on day 6 was ribosome pathway, on day 15 were regulation of actin cytoskeleton and focal adhesion pathway. 3. The genes involved in the ribosome pathways was ribosomal protein L17 (RPL17). regulation of actin cytoskeleton pathway were Ras-related C3 botulinum toxin substrate 2 (RAC2), Ras-related protein Rap-1b precursor (RAP1B), ARF GTPase-activating protein (GIT1), IQ motif containing GTPase activating protein 2 (IQGAP2), Integrin alpha-v precursor (ITGAV), Integrin alpha-2 (ITGA2), Integrin beta-2 precursor (ITGB2), Integrin beta-3 precursor (ITGB3), Integrin alpha-IIb-like (ITGA5). Focal adhesion Proto-oncogene vav (Vav-like), Tyrosine-protein kinase Fyn-like (FYN).


Assuntos
Galinhas/genética , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/induzido quimicamente , Tiram/toxicidade , Tíbia/efeitos dos fármacos , Animais , Ontologia Genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , Tíbia/patologia , Transcriptoma/efeitos dos fármacos
9.
Ecotoxicol Environ Saf ; 206: 111400, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010593

RESUMO

Fungicide thiram, a representative dithiocarbamate pesticide can cause potential health hazards to humans and animal health due to the residues in various agricultural products. However, the effects of thiram on lipid metabolism by perturbing gut microbiota of chickens are not clear. Our study was aimed to explore the protective of polysaccharide extracted from Morinda officinalis (MOP) on acute thiram-exposed chickens, and to analyze the association between alteration of gut microbiota and lipid metabolism. Three hundred chicks are fed with a normal diet, thiram-treated diet (100 mg/kg), and a thiram-treated diet supplemented with 250, 500, or 1000 mg/kg MOP was used in this study, respectively. The results showed that thiram exposure prominently elevated liver index, changed liver function by histopathological examination and serum biochemistry diagnoses, and increased blood lipid parameters. Meanwhile, the expression level of some key genes in hepatic lipid metabolism dysregulated significantly in the thiram-exposed chickens. Furthermore, 16S rRNA gene sequencing indicated that thiram exposure can significantly alter the richness, diversity, and composition of the broiler fecal microbiota, and the relative abundance of Firmicutes and Proteobacteria was also affected at the phylum level. In addition, some microbial populations including Lactobacillus, Ruminococcus, Oscillospira, Blautia, and Butyricicoccus significantly decreased at the genus level, whereas the Klebsiella was opposite. Correlation analysis further revealed a significant association between microorganisms and lipid metabolism-related parameters. Optimistically, 500 mg/kg MOP can alleviate the damage of thiram in the gut and liver. Together, these data suggest that thiram exposure causes the imbalance of the gut microbiota and hepatic lipid metabolism disorder in chickens.


Assuntos
Galinhas/metabolismo , Fungicidas Industriais/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tiram/toxicidade , Animais , Fezes/microbiologia , Fígado/metabolismo , Testes de Função Hepática , Morinda/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , RNA Ribossômico 16S/metabolismo
10.
Ecotoxicol Environ Saf ; 206: 111194, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32866894

RESUMO

Tibial Dyschondroplasia (TD) is a prevailing skeletal disorder that mainly affects rapidly growing avian species. It results in reduced bone strength, lameness and an increase risk of fragility fractures. Total flavonoids of Rhizoma drynariae (TFRD) have been used as an effective treatment of different bone diseases in humans. The current in vitro study was conducted to explore the therapeutic effect of TFRD on thiram-induced cytotoxicity in avian growth plate cells via bone morphogenetic protein-2/runt related transcription factor-2 (BMP-2/Runx2) and Indian hedgehog/Parathyroid hormone-related peptide (IHH/PTHrP) expressions. Chondrocytes were isolated, cultured and refined from chicken's tibial growth plates in a special medium. Then chondrocytes were treated with sublethal thiram having less concentration (2.5 µg/mL) to induce cytotoxicity of chondrocyte, and then treated with providential doses (100 µg/mL) of TFRD. Thiram caused distorted morphology of chondrocytes, nuclei appeared disintegration or lysed along with decreased expressions of BMP-2/Runx2 and IHH/PTHrP. TFRD administration not only enhanced the viability of chondrocytes by itself, but also well restored the damage caused by thiram on growth plate chondrocytes by significantly up-regulating the expressions of BMP-2/Runx2 and IHH/PTHrP. Therefore, this study provides a novel insight into the further treatment of TD and other skeletal ailments and lays the foundation for prevention and treatment.


Assuntos
Proteína Morfogenética Óssea 2/genética , Condrócitos/efeitos dos fármacos , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Polypodiaceae/química , Tiram/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Condrócitos/metabolismo , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Flavonoides/isolamento & purificação , Lâmina de Crescimento/citologia , Lâmina de Crescimento/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Cultura Primária de Células , Rizoma , Regulação para Cima
11.
Ecotoxicol Environ Saf ; 190: 110126, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918251

RESUMO

Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate pesticide used for crop protection and storage. But, it's widespread utilization is associated with deleterious growth plate cartilage disorder in broilers termed as avian tibial dyschondroplasia (TD). TD results in non-mineralized and less vascularized proximal tibial growth plate cartilage causing lameness and poor growth performance. This study investigated the therapeutic potential of puerarin against thiram toxicity in TD affected chickens. One-day-old broiler chickens (n = 240) were alienated into three equal groups i.e. control, TD and puerarin (n = 80) and were offered standard feed. Additionally, TD and puerarin groups were offered thiram at 50 mg/kg of feed from 4 to 7 days for TD induction followed by puerarin therapy at 120 mg/kg to puerarin group only from 8 to 18 days for TD treatment. Thiram feeding to TD and puerarin group chickens caused lameness, mortality, and increased the aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels and growth plate (GP) size and upregulated HIF-1α expression. Besides, the production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels and the expressions of TIMP-3 and BCL-2 were decreased (p < 0.05). Puerarin alleviated lameness, enhanced angiogenesis and growth performance and serum and antioxidant enzymes, decreased apoptosis and recuperated GP width by significantly downregulating HIF-1α and upregulating the TIMP-3 and BCL-2 mRNA and protein expressions in puerarin group chickens (p < 0.05). In conclusion, the toxic effects associated with thiram can be mitigated using puerarin.


Assuntos
Fungicidas Industriais/toxicidade , Isoflavonas/farmacologia , Osteocondrodisplasias/veterinária , Tiram/toxicidade , Vasodilatadores/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galinhas/metabolismo , Glutationa Peroxidase/metabolismo , Lâmina de Crescimento/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Malondialdeído/metabolismo , Neovascularização Patológica/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tíbia/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/metabolismo
12.
Gen Comp Endocrinol ; 271: 73-81, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30408483

RESUMO

Thiram, a pesticide in the dithiocarbamate chemical family, is widely used to prevent fungal disease in seeds and crops. Its off-site movement to surface waters occurs and may place aquatic organisms at potential harm. Zebrafish embryos were used for investigation of acute (1 h) thiram exposure (0.001-10 µM) at various developmental stages. Survival decreased at 1 µM and 10 µM and hatching was delayed at 0.1 µM and 1 µM. Notochord curvatures were seen at 0.1 and 1 µM thiram when exposure was initiated at 2 and at 10 hpf. Similar notochord curvatures followed exposure to the known TPO inhibitor, methimazole (MMI). Changes were absent in embryos exposed at later stages, i.e., 12 hpf. In embryos exposed to 0.1 or 1 µM at 10 hpf, levels of the thyroid enzyme, Deiodinase 3, increased by 12 hpf. Thyroid peroxide (TPO), important in T4 synthesis, decreased by 48 hpf in embryos exposed to 1 µM at 10 hpf. Thiram toxicity was stage-dependent and early life stage exposure may be responsible for adverse effects seen later. These effects may be due to impacts on the thyroid via regulation of specific thyroid genes including TPO and Deiodinase 3.


Assuntos
Tiram/toxicidade , Glândula Tireoide/efeitos dos fármacos , Peixe-Zebra/fisiologia , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Edema/patologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Larva/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Ecotoxicol Environ Saf ; 183: 109575, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442808

RESUMO

Tibial Dyschondroplasia (TD), a metabolic disease of fast growing poultry birds that effects the growth of bone and cartilage, is characterized by anorexia, mental depression and lameness. Wnt/ß-catenin pathway can mediate the occurrence of TD, and previous study showed the therapeutic effect of TanshinoneⅡA to TD Broilers. However there is no report about the effect of TanshinoneⅡA treating TD broiler chicken through wnt/ß-catenin pathway. The objective of this study was to explore the potential mechanism of how Tanshinone II A treats TD. Hematoxylin and eosin staining was used to study histologic pathology of growth plates. Key gene expressions were tested by western blot and reverse transcription quantitative real-time PCR. Results compared with control groups, showed the TD broilers' growth plate performed significantly better by treating with TanshinoneⅡA. After chickens treated by TanshinoneⅡA, the gene and protein expression of WNT5α and BMP-2 were increased (P < 0.05), but the ß-catenin were decreased (P < 0.05), which are all key genes expressed in wnt/ß-catenin pathway. Therefore, TanshinoneⅡA can potentially treat TD by affecting the expression of genes in wnt/ß-catenin pathway and it has availability to use as treatment for TD broilers.


Assuntos
Abietanos/uso terapêutico , Lâmina de Crescimento/efeitos dos fármacos , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Abietanos/farmacologia , Animais , Galinhas , Lâmina de Crescimento/patologia , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/tratamento farmacológico , Osteocondrodisplasias/metabolismo , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/metabolismo , Tiram/toxicidade , Tíbia
14.
Ecotoxicol Environ Saf ; 175: 83-89, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30889403

RESUMO

Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is widely used on seeds and storing food grains. The incorporation of thiram into the food chain could be a risk for both human beings and animals. Thiram-contaminated feed has been considered a common cause of tibial dyschondrolplasia (TD) in many avian species. The molecular mechanism of action of thiram on TD involving microRNA (miRNA) is not fully understood. For this purpose, the morbidity and pathologic changes were evaluated to understand the TD, and high-throughput RNA sequencing (RNA-Seq) was performed to explore the differentially expressed miRNAs (DEGs). RT-qPCR was used to confirm the validity as compared with sequencing data. The results showed that the marked alterations in the growth plate of the TD chickens were noticeable, with shrinking cells and irregular chondrocyte columns as compared with control group. In this study, we identified total 375 (p < 0.1), 340 (p < 0.05) and 266 (p < 0.01) significant DEGs between the TD and control groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs showed that the target miRNAs were significantly enriched in different treatment groups, such as apoptosis, mRNA surveillance pathway, mitophagy-animal, etc. This study provides theoretical basis for in-depth understanding the pathogenesis of thiram-induced TD and explore the new insights towards the proposed molecular mechanism of specific miRNA as biomarkers for effective gene diagnosis and treatment of TD in broilers.


Assuntos
Galinhas , Poluentes Ambientais/toxicidade , MicroRNAs/genética , Osteocondrodisplasias/induzido quimicamente , Doenças das Aves Domésticas/induzido quimicamente , Tiram/toxicidade , Tíbia/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Galinhas/genética , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , MicroRNAs/metabolismo , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/metabolismo , Tíbia/metabolismo , Tíbia/patologia , Transcriptoma/efeitos dos fármacos
15.
Ecotoxicol Environ Saf ; 168: 205-211, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30388538

RESUMO

Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate, which is extensively used in agriculture as pesticide and fungicide for treating grains intended for seed purposes and also for storing food grains. One of the most evident and detrimental effect produced by thiram is tibial dyschondroplasia (TD) in many avian species, by feeding diets containing thiram, a growth plate cartilage disease. TD is characterized by the lack of blood vessels and impaired vascular invasion of the hypertrophic chondrocyte resulting in the massive cell death. This study investigated the effects of ligustrazine on the treatment and control of thiram induced-TD. A total of 210 chicks were divided into three equal groups (n = 70): control group (received standard diet), TD group (feed on thiram containing diet from day 3-7), and ligustrazine group (feed on thiram containing diet from day 3-7 and after that ligustrazine @ 30 mg/kg from day 8 to day 18). During the experiment, the lameness, production parameters, tibia bone indicators, pathological index changes and integrin beta 3 (ITGB3) expressions were examined. The results reveal that ligustrazine plays an important role in improving angiogenesis and decreasing chondrocytes damage in TD chicks via a new molecule modulating ITGB3. So, the administration of ligustrazine can be an important way to cope with the losses and costs associated with TD in commercial poultry farming and animal welfare issue due to environmental contamination of thiram.


Assuntos
Integrina beta3/metabolismo , Osteocondrodisplasias/tratamento farmacológico , Pirazinas/farmacologia , Tiram/toxicidade , Tíbia/efeitos dos fármacos , Animais , Galinhas , Regulação da Expressão Gênica , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/patologia , Integrina beta3/genética , Neovascularização Patológica/induzido quimicamente , Neovascularização Patológica/tratamento farmacológico , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/veterinária , Praguicidas/toxicidade , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Tíbia/patologia
16.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261680

RESUMO

Chlorogenic acid (CGA) is a widely applied traditional Chinese medicine ingredient which can be used for the treatment of osteoporosis. In this experiment, we investigated the potential therapeutic effect of chlorogenic acid on thiram-induced tibial dyschondroplasia (TD) and explored the underlying mechanisms that have been rarely mentioned by others yet. Performance indicator analysis and tibial parameter analysis showed that CGA exhibited a definite positive effect on thiram-induced TD chickens. In order to further explore the mechanisms underlying the positive actions of CGA, apoptotic, autophagic genes and MMPs involved in matrix mineralization of growth plate were evaluated in this study. The results showed that CGA decreased the expression of pro-apoptotic genes caspases-3 and caspases-9, leading to the reduction of apoptotic cells accumulated in growth plate. In addition, CGA also increased the level of BECN1, an important gene involved in autophagy, which benefits the survival of abnormal cells. Furthermore, CGA also increased the expression of MMP-9, MMP-10, and MMP-13, which can directly affect the ossification of bones. Altogether, these results demonstrate that CGA possesses a positive therapeutic effect on thiram-induced TD via modulating the expression of caspases and BECN1 and regulating the degradation of ECM (extracellular matrix).


Assuntos
Proteína Beclina-1/metabolismo , Ácido Clorogênico/uso terapêutico , Matriz Extracelular/metabolismo , Osteocondrodisplasias/tratamento farmacológico , Animais , Apoptose , Autofagia , Proteína Beclina-1/genética , Caspases/genética , Caspases/metabolismo , Galinhas , Ácido Clorogênico/farmacologia , Matriz Extracelular/efeitos dos fármacos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Osteocondrodisplasias/etiologia , Tiram/toxicidade , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Tíbia/patologia
17.
J Biol Regul Homeost Agents ; 32(1): 89-95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29504370

RESUMO

Tibial dyschondroplasia (TD) is a disease of many avian species characterized by an enlarged and avascular lesion in the proximal tibiotarsal bone. The aim of present study was to evaluate the effects of hypoxia-inducible factor-1α(HIF-1α) inhibition on thiram- induced TD using synthetic medicine FK228 and the association between HIF-1α and heat-shock protein 90 (Hsp90). One hundred and fifty broiler chicks were equally divided into 3 groups: control; thiram fed; and FK228 treatment. Expressions of HIF-1α and Hsp90 genes were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR) on day 10 and 14 post-hatch. Western blot analysis of HIF-1α and Hsp90 gene was performed to measure the protein levels at the end of the experiment. Results showed that HIF-1α and Hsp90 levels were significantly (P less than 0.05) up-regulated in the thiram group as compared to the control group. Meanwhile, FK228 (HIF-1α inhibitor) significantly (P less than 0.05) down- regulated the mRNA and protein levels of HIF-1α and Hsp90, restored the size of growth plate and diminished lameness. In conclusion, HIF-1α and Hsp90 play an important role in the formation of avascular growth plate and there is a direct relationship between HIF-1α and Hsp90 for the progression of TD pathogenesis. Therefore, HIF- 1α may prevent and control TD in broiler chickens.


Assuntos
Proteínas Aviárias/metabolismo , Doenças Ósseas , Depsipeptídeos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças das Aves Domésticas , Tiram/toxicidade , Tíbia/metabolismo , Animais , Doenças Ósseas/induzido quimicamente , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Galinhas , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , Tíbia/patologia
18.
Pestic Biochem Physiol ; 143: 154-160, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183586

RESUMO

The study objective was a determination of thiram cytotoxicity and silybin cytoprotective activity in course of the fungicide impact on cell metabolism and membrane integrity. Firstly, human, rat, chicken hepatoma cells and rat myoblasts cultures were incubated with thiram. The results showed higher sensitivity of myoblasts on thiram exposure than the hepatoma cells. Among hepatoma cells, the chicken cultures were the most sensitive on the fungicide endangering. The mitochondrial activity was the most thiram affected function within all types the cell lines used. When silybin co-acted with thiram, an increase of the cell viability was recorded. The EC50-values were higher for thiram subjected to interaction with silybin than the effect of alone thiram action. The interaction mode between the studied compounds shown by combination index (CI) represented an antagonistic or an additive nature and was depended on thiram concentration, type of the cells and the assay used. Moreover, the morphology changes were dependent on silybin presence in the cell cultures subjected to thiram impact at the same time. Staining with Hoechst 33342 and propidium ioidium revealed the apoptosis cell death in the incubation cultures. Definitely, the results have shown a potential of silybin to protect the cultured cells in course of cytotoxicity induced by thiram. However, future studies taking into account other endpoints of thiram cytotoxicity pathways including species differences and the cytoprotection efficacy could be of interest.


Assuntos
Fungicidas Industriais/toxicidade , Substâncias Protetoras/farmacologia , Silimarina/farmacologia , Tiram/toxicidade , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Galinhas , Humanos , Mitocôndrias/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Ratos , Silibina
19.
Avian Pathol ; 44(1): 13-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25402545

RESUMO

Tibial dyschondroplasia (TD) is an avian bone disorder of different aetiologies that may be associated with lameness. The disorder is characterized by focal disruption of endochondral bone formation, with a lack of matrix proteolysis and an accumulation of non-mineralized avascular cartilage. The aim of this study was to determine the expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in normal, thiram-induced TD lesions and in the process of recovery from TD in broiler chickens. An extracellular matrix (ECM) degrading enzyme, matrix metalloproteinase-9 (MMP-9), was selected to investigate the effects of CD147 in the degradation of ECM. Gene expression was analysed by quantitative real-time polymerase chain reaction and protein levels by immunohistochemistry and western blotting. The birds were divided into three groups: thiram fed; recovery; and controls. Genes encoding CD147 and MMP-9 were down-regulated during the development of the disease, and were up-regulated during recovery. Western blotting also showed lower protein levels of CD147 in TD, which increased during the recovery phase associated with ECM degradation and growth plate repair. The findings of this study suggest that ECM has a crucial role in the occurrence of TD and that CD147 appears to play a pivotal role in matrix proteolysis in the chicken, similar to that in other species.


Assuntos
Basigina/metabolismo , Galinhas , Matriz Extracelular/metabolismo , Osteocondrodisplasias/veterinária , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , Tíbia/patologia , Análise de Variância , Animais , Western Blotting/veterinária , Primers do DNA/genética , Imuno-Histoquímica/veterinária , Metaloproteinase 9 da Matriz/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Doenças das Aves Domésticas/induzido quimicamente , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Tiram/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA