Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.237
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(1): 62-76, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963057

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtornos Mentais/metabolismo , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Homeostase/fisiologia , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Neurogênese/fisiologia , Neuropeptídeos/genética , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Resultado do Tratamento
2.
Cell ; 170(1): 17-33, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666118

RESUMO

RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.


Assuntos
Proteínas ras/metabolismo , Animais , Membrana Celular/metabolismo , Anormalidades Congênitas/metabolismo , Humanos , Transtornos Mentais/metabolismo , Mutação , Neoplasias/metabolismo , Filogenia , Transdução de Sinais , Leveduras , Proteínas ras/química , Proteínas ras/genética
3.
Cell ; 158(6): 1446-1446.e1, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215498

RESUMO

FMRP, or fragile X mental retardation protein is an RNA-binding protein. Mutations in the FMRP protein have been associated with neurological disease as have a number of its mRNA-binding targets. This SnapShot presents 40 bona fide FMRP targets for which mRNA binding and protein regulation have been robustly reported in mammals along with the diseases with which they have been associated.


Assuntos
Encefalopatias/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Transtornos Mentais/genética , RNA Mensageiro/metabolismo , Animais , Encefalopatias/metabolismo , Humanos , Transtornos Mentais/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
4.
Bioessays ; 46(10): e2300246, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39258367

RESUMO

Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.


Assuntos
Biomarcadores , Saúde Mental , Humanos , Biomarcadores/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/diagnóstico , Pesquisadores , Saliva/química , Saliva/metabolismo
5.
Mol Cell Proteomics ; 23(6): 100777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670310

RESUMO

Transmembrane (TM) proteins constitute over 30% of the mammalian proteome and play essential roles in mediating cell-cell communication, synaptic transmission, and plasticity in the central nervous system. Many of these proteins, especially the G protein-coupled receptors (GPCRs), are validated or candidate drug targets for therapeutic development for mental diseases, yet their expression profiles are underrepresented in most global proteomic studies. Herein, we establish a brain TM protein-enriched spectral library based on 136 data-dependent acquisition runs acquired from various brain regions of both naïve mice and mental disease models. This spectral library comprises 3043 TM proteins including 171 GPCRs, 231 ion channels, and 598 transporters. Leveraging this library, we analyzed the data-independent acquisition data from different brain regions of two mouse models exhibiting depression- or anxiety-like behaviors. By integrating multiple informatics workflows and library sources, our study significantly expanded the mental stress-perturbed TM proteome landscape, from which a new GPCR regulator of depression was verified by in vivo pharmacological testing. In summary, we provide a high-quality mouse brain TM protein spectral library to largely increase the TM proteome coverage in specific brain regions, which would catalyze the discovery of new potential drug targets for the treatment of mental disorders.


Assuntos
Encéfalo , Modelos Animais de Doenças , Transtornos Mentais , Camundongos Endogâmicos C57BL , Proteoma , Proteômica , Animais , Proteoma/metabolismo , Encéfalo/metabolismo , Proteômica/métodos , Camundongos , Transtornos Mentais/metabolismo , Proteínas de Membrana/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo
6.
Mol Psychiatry ; 29(9): 2810-2820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38532011

RESUMO

Recent and pioneering animal research has revealed the brain utilizes a variety of molecular, cellular, and network-level mechanisms used to forget memories in a process referred to as "active forgetting". Active forgetting increases behavioral flexibility and removes irrelevant information. Individuals with impaired active forgetting mechanisms can experience intrusive memories, distressing thoughts, and unwanted impulses that occur in neuropsychiatric diseases. The current evidence indicates that active forgetting mechanisms degrade, or mask, molecular and cellular memory traces created in synaptic connections of "engram cells" that are specific for a given memory. Combined molecular genetic/behavioral studies using Drosophila have uncovered a complex system of cellular active-forgetting pathways within engram cells that is regulated by dopamine neurons and involves dopamine-nitric oxide co-transmission and reception, endoplasmic reticulum Ca2+ signaling, and cytoskeletal remodeling machinery regulated by small GTPases. Some of these molecular cellular mechanisms have already been found to be conserved in mammals. Interestingly, some pathways independently regulate forgetting of distinct memory types and temporal phases, suggesting a multi-layering organization of forgetting systems. In mammals, active forgetting also involves modulation of memory trace synaptic strength by altering AMPA receptor trafficking. Furthermore, active-forgetting employs network level mechanisms wherein non-engram neurons, newly born-engram neurons, and glial cells regulate engram synapses in a state and experience dependent manner. Remarkably, there is evidence for potential coordination between the network and cellular level forgetting mechanisms. Finally, subjects with several neuropsychiatric diseases have been tested and shown to be impaired in active forgetting. Insights obtained from research on active forgetting in animal models will continue to enrich our understanding of the brain dysfunctions that occur in neuropsychiatric diseases.


Assuntos
Memória , Transtornos Mentais , Animais , Humanos , Transtornos Mentais/fisiopatologia , Transtornos Mentais/metabolismo , Memória/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Dopamina/metabolismo
7.
Mol Psychiatry ; 29(9): 2821-2833, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38553540

RESUMO

In the brain, astrocytes regulate shape and functions of the synaptic and vascular compartments through a variety of released factors and membrane-bound proteins. An imbalanced astrocyte activity can therefore have drastic negative impacts on brain development, leading to the onset of severe pathologies. Clinical and pre-clinical studies show alterations in astrocyte cell number, morphology, molecular makeup and astrocyte-dependent processes in different affected brain regions in neurodevelopmental (ND) and neuropsychiatric (NP) disorders. Astrocytes proliferate, differentiate and mature during the critical period of early postnatal brain development, a time window of elevated glia-dependent regulation of a proper balance between synapse formation/elimination, which is pivotal in refining synaptic connectivity. Therefore, any intrinsic and/or extrinsic factors altering these processes during the critical period may result in an aberrant synaptic remodeling and onset of mental disorders. The peculiar bridging position of astrocytes between synaptic and vascular compartments further allows them to "compute" the brain state and consequently secrete factors in the bloodstream, which may serve as diagnostic biomarkers of distinct healthy or disease conditions. Here, we collect recent advancements regarding astrogenesis and astrocyte-mediated regulation of neuronal network remodeling during early postnatal critical periods of brain development, focusing on synapse elimination. We then propose alternative hypotheses for an involvement of aberrancies in these processes in the onset of ND and NP disorders. In light of the well-known differential prevalence of certain brain disorders between males and females, we also discuss putative sex-dependent influences on these neurodevelopmental events. From a translational perspective, understanding age- and sex-dependent astrocyte-specific molecular and functional changes may help to identify biomarkers of distinct cellular (dys)functions in health and disease, favouring the development of diagnostic tools or the selection of tailored treatment options for male/female patients.


Assuntos
Astrócitos , Encéfalo , Transtornos Mentais , Sinapses , Astrócitos/metabolismo , Humanos , Transtornos Mentais/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Animais , Sinapses/metabolismo , Sinapses/fisiologia , Feminino , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Masculino
8.
Mol Psychiatry ; 29(10): 3141-3150, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38684796

RESUMO

N6-methyladenosine (m6A) methylation regulates gene expression/protein by influencing numerous aspects of mRNA metabolism and contributes to neuropsychiatric diseases. Here, we integrated multi-omics data and genome-wide association study summary data of schizophrenia (SCZ), bipolar disorder (BP), attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD) to reveal the role of m6A in neuropsychiatric disorders by using transcriptome-wide association study (TWAS) tool and Summary-data-based Mendelian randomization (SMR). Our investigation identified 86 m6A sites associated with seven neuropsychiatric diseases and then revealed 7881 associations between m6A sites and gene expressions. Based on these results, we discovered 916 significant m6A-gene associations involving 82 disease-related m6A sites and 606 genes. Further integrating the 58 disease-related genes from TWAS and SMR analysis, we obtained 61, 8, 7, 3, and 2 associations linking m6A-disease, m6A-gene, and gene-disease for SCZ, BP, AD, MDD, and PD separately. Functional analysis showed the m6A mapped genes were enriched in "response to stimulus" pathway. In addition, we also analyzed the effect of gene expression on m6A and the post-transcription effect of m6A on protein. Our study provided new insights into the genetic component of m6A in neuropsychiatric disorders and unveiled potential pathogenic mechanisms where m6A exerts influences on disease through gene expression/protein regulation.


Assuntos
Adenosina , Transtorno Bipolar , Transtorno Depressivo Maior , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Esquizofrenia , Transcriptoma , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Estudo de Associação Genômica Ampla/métodos , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Análise da Randomização Mendeliana/métodos , Transcriptoma/genética , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Predisposição Genética para Doença/genética , Multiômica
9.
Eur J Neurosci ; 60(5): 5040-5068, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39099373

RESUMO

Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.


Assuntos
Retículo Endoplasmático , Transtornos Mentais , Mitocôndrias , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Retículo Endoplasmático/metabolismo , Animais , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Membranas Associadas à Mitocôndria
10.
Apoptosis ; 29(9-10): 1361-1376, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38853204

RESUMO

TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proliferação de Células/genética , Diferenciação Celular , Transtornos Mentais/genética , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Transtornos Mentais/terapia , Terapia de Alvo Molecular
11.
Hum Brain Mapp ; 45(4): e26641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488470

RESUMO

Gene expression varies across the brain. This spatial patterning denotes specialised support for particular brain functions. However, the way that a given gene's expression fluctuates across the brain may be governed by general rules. Quantifying patterns of spatial covariation across genes would offer insights into the molecular characteristics of brain areas supporting, for example, complex cognitive functions. Here, we use principal component analysis to separate general and unique gene regulatory associations with cortical substrates of cognition. We find that the region-to-region variation in cortical expression profiles of 8235 genes covaries across two major principal components: gene ontology analysis suggests these dimensions are characterised by downregulation and upregulation of cell-signalling/modification and transcription factors. We validate these patterns out-of-sample and across different data processing choices. Brain regions more strongly implicated in general cognitive functioning (g; 3 cohorts, total meta-analytic N = 39,519) tend to be more balanced between downregulation and upregulation of both major components (indicated by regional component scores). We then identify a further 29 genes as candidate cortical spatial correlates of g, beyond the patterning of the two major components (|ß| range = 0.18 to 0.53). Many of these genes have been previously associated with clinical neurodegenerative and psychiatric disorders, or with other health-related phenotypes. The results provide insights into the cortical organisation of gene expression and its association with individual differences in cognitive functioning.


Assuntos
Encéfalo , Transtornos Mentais , Humanos , Encéfalo/fisiologia , Cognição/fisiologia , Mapeamento Encefálico , Transtornos Mentais/metabolismo , Expressão Gênica , Imageamento por Ressonância Magnética
12.
Eur J Clin Invest ; 54(9): e14232, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38700073

RESUMO

BACKGROUND & OBJECTIVES: Currently, there is a significant focus on the decrease of soluble receptor of advanced glycation end products (sRAGE) in neurocognitive and neuropsychiatric disorders. sRAGE plays a decoy role against the inflammatory response of advanced glycation end products (AGE), which has led to increased interest in its role in these disorders. This meta-analysis aimed to investigate the significant differences in sRAGE levels between neurocognitive and neuropsychiatric disorders compared to control groups. METHOD: A systematic review was conducted using the PUBMED, Scopus and Embase databases up to October 2023. Two reviewers assessed agreement for selecting papers based on titles and abstracts, with kappa used to measure agreement and finally publications were scanned according to controlled studies. Effect sizes were calculated as weighted mean differences (WMD) and pooled using a random effects model. Heterogeneity was assessed using I2, followed by subgroup analysis and meta-regression tests. Quality assessment was performed using the Newcastle-Ottawa Quality Assessment Scale. RESULTS: In total, 16 studies were included in the present meta-analysis. Subjects with neurocognitive (n = 1444) and neuropsychiatric (n = 444) disorders had lower sRAGE levels in case-control (WMD: -0.21, 95% CI: -0.33, -0.10; p <.001) and cross-sectional (WMD: -0.29, 95% CI = -0.44, -0.13, p <.001) studies with high heterogeneity and no publication bias. In subgroup analysis, subjects with cognitive impairment (WMD: -0.87, 95% CI: -1.61, -0.13, p =.000), and age >50 years (WMD: -0.39, 95% CI: -0.74, -0.05, p =.000), had lower sRAGE levels in case-control studies. Also, dementia patients (WMD: -0.41, 95% CI: -0.72, -0.10, p =.014) with age >50 years (WMD: -0.33, 95% CI: -0.54, -0.13, p = 0.000) and in Asian countries (WMD: -0.28, 95% CI: -0.42, -0.13, p =.141) had lower sRAGE levels in cross-sectional studies. CONCLUSION: This meta-analysis revealed a significant reduction in sRAGE in neurocognitive and neuropsychiatric disorders particularly in Asians and moderate age.


Assuntos
Biomarcadores , Transtornos Mentais , Transtornos Neurocognitivos , Receptor para Produtos Finais de Glicação Avançada , Humanos , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/metabolismo , Produtos Finais de Glicação Avançada , Transtornos Mentais/sangue , Transtornos Mentais/diagnóstico , Transtornos Mentais/metabolismo , Transtornos Neurocognitivos/sangue , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/metabolismo
13.
Mol Psychiatry ; 28(3): 1365-1382, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473997

RESUMO

Chronic stress exposure induces maladaptive behavioral responses and increases susceptibility to neuropsychiatric conditions. However, specific neuronal populations and circuits that are highly sensitive to stress and trigger maladaptive behavioral responses remain to be identified. Here we investigate the patterns of spontaneous activity of proopiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus following exposure to chronic unpredictable stress (CUS) for 10 days, a stress paradigm used to induce behavioral deficits such as anhedonia and behavioral despair [1, 2]. CUS exposure increased spontaneous firing of POMC neurons in both male and female mice, attributable to reduced GABA-mediated synaptic inhibition and increased intrinsic neuronal excitability. While acute activation of POMC neurons failed to induce behavioral changes in non-stressed mice of both sexes, subacute (3 days) and chronic (10 days) repeated activation of POMC neurons was sufficient to induce anhedonia and behavioral despair in males but not females under non-stress conditions. Acute activation of POMC neurons promoted susceptibility to subthreshold unpredictable stress in both male and female mice. Conversely, acute inhibition of POMC neurons was sufficient to reverse CUS-induced anhedonia and behavioral despair in both sexes. Collectively, these results indicate that chronic stress induces both synaptic and intrinsic plasticity of POMC neurons, leading to neuronal hyperactivity. Our findings suggest that POMC neuron dysfunction drives chronic stress-related behavioral deficits.


Assuntos
Anedonia , Núcleo Arqueado do Hipotálamo , Depressão , Neurônios , Pró-Opiomelanocortina , Estresse Psicológico , Animais , Feminino , Masculino , Camundongos , Doença Aguda , Anedonia/fisiologia , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Doença Crônica , Excitabilidade Cortical/fisiologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Transtornos Mentais/metabolismo , Transtornos Mentais/fisiopatologia , Camundongos Endogâmicos C57BL , Fenômenos Fisiológicos do Sistema Nervoso , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Pró-Opiomelanocortina/biossíntese , Pró-Opiomelanocortina/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Sinapses/metabolismo , Sinapses/fisiologia
14.
Neurochem Res ; 49(10): 2668-2681, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38918332

RESUMO

Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.


Assuntos
Cloridrato de Fingolimode , Doenças do Sistema Nervoso , Fármacos Neuroprotetores , Cloridrato de Fingolimode/uso terapêutico , Cloridrato de Fingolimode/farmacologia , Humanos , Animais , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Estresse Oxidativo/efeitos dos fármacos
15.
J Neural Transm (Vienna) ; 131(9): 1025-1037, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39007920

RESUMO

Psychiatric disorders such as Bipolar disorder, Anxiety, Major depressive disorder, Schizophrenia, Attention-deficit/hyperactivity disorder, as well as neurological disorders such as Migraine, are linked by the evidence of altered calcium homeostasis. The disturbance of intra-cellular calcium homeostasis disrupts the activity of numerous ion channels including transient receptor potential (TRP) channels. TRP channel families comprise non-selective calcium-permeable channels that have been implicated in variety of physiological processes in the brain, as well as in the pathogenesis of psychiatric disorders. Through a comprehensive review of current research and experimentation, this investigation elucidates the role of TRP channels in psychiatric disorders. Furthermore, this review discusses about the exploration of epigenetics and TRP channels in psychiatric disorders.


Assuntos
Transtornos Mentais , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Animais
16.
Pharmacol Res ; 204: 107201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704108

RESUMO

Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like ß-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.


Assuntos
Estrogênios , Terapia por Exercício , Transtornos Mentais , Animais , Humanos , Estrogênios/metabolismo , Exercício Físico/fisiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/terapia , Receptores de Estrogênio/metabolismo , Transdução de Sinais
17.
Curr Top Membr ; 94: 299-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39370211

RESUMO

Extracellular vesicles (EVs) are produced, secreted, and targeted by most human cells, including cells that compose nervous system tissues. EVs carry several types of biomolecules, such as lipids, proteins and microRNA, and can function as signaling agents in physiological and pathological processes. In this chapter, we will focus on EVs and their cargo secreted by brain cells, especially neurons and glia, and how these aspects are affected in pathological conditions. The chapter covers neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, as well as several psychiatric disorders, namely schizophrenia, autism spectrum disorder and major depressive disorder. This chapter also addresses other types of neurological dysfunctions, epilepsy and traumatic brain injury. EVs can cross the blood brain barrier, and thus brain EVs may be detected in more accessible peripheral tissue, such as circulating blood. Alterations in EV composition and contents can therefore impart valuable clues into the molecular etiology of these disorders, and serve biomarkers regarding disease prevalence, progression and treatment. EVs can also be used to carry drugs and biomolecules into brain tissue, considered as a promising drug delivery agent for neurological diseases. Therefore, although this area of research is still in its early development, it offers great potential in further elucidating and in treating neurological disorders.


Assuntos
Biomarcadores , Vesículas Extracelulares , Doenças Neurodegenerativas , Humanos , Vesículas Extracelulares/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Biomarcadores/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/terapia , Animais , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia
18.
Nucleic Acids Res ; 50(D1): D231-D235, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893873

RESUMO

The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5'-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Enzimas/genética , RNA/genética , Ribonucleosídeos/genética , Interface Usuário-Computador , Sequência de Bases , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Gráficos por Computador , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Enzimas/metabolismo , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Doenças Hematológicas/genética , Doenças Hematológicas/metabolismo , Doenças Hematológicas/patologia , Humanos , Internet , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Transtornos Mentais/patologia , Doenças Musculoesqueléticas/genética , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleosídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000326

RESUMO

Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.


Assuntos
Dano ao DNA , Instabilidade Genômica , Transtornos Mentais , Doenças Neurodegenerativas , Animais , Humanos , Reparo do DNA , Transtornos Mentais/metabolismo , Transtornos Mentais/etiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/genética
20.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39201726

RESUMO

It has been unequivocally established that kynurenic acid has a number of actions in a variety of cells and tissues, raising, in principle, the possibility of targeting its generation, metabolism or sites of action to manipulate those effects to a beneficial therapeutic end. However, many basic aspects of the biology of kynurenic acid remain unclear, potentially leading to some confusion and misinterpretations of data. They include questions of the source, generation, targets, enzyme expression, endogenous concentrations and sites of action. This essay is intended to raise and discuss many of these aspects as a source of reference for more balanced discussion. Those issues are followed by examples of situations in which modulating and correcting kynurenic acid production or activity could bring significant therapeutic benefit, including neurological and psychiatric conditions, inflammatory diseases and cell protection. More information is required to obtain a clear overall view of the pharmacological environment relevant to kynurenic acid, especially with respect to the active concentrations of kynurenine metabolites in vivo and changed levels in disease. The data and ideas presented here should permit a greater confidence in appreciating the sites of action and interaction of kynurenic acid under different local conditions and pathologies, enhancing our understanding of kynurenic acid itself and the many clinical conditions in which manipulating its pharmacology could be of clinical value.


Assuntos
Ácido Cinurênico , Ácido Cinurênico/metabolismo , Humanos , Animais , Cinurenina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA