Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(14): 579-591, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38708983

RESUMO

Natural products are usually considered harmless; however, these substances need to be consumed with caution. Biological assays with plant models are a suitable alternative for prospective studies to assess natural product-initiated toxicity. The aim of this study was to examine the toxic potential of leaf and flower extracts derived from Tropaeolum majus L. a widely used plant in traditional medicine. Seeds of Lactuca sativa L. were exposed to T. majus extracts and based upon the seedling growth curve values, the 50% Inhibition Concentration (IC50) was calculated and applied for cell cycle analysis exposure. Both extracts contained organic acids, proteins, amino acids, and terpene steroids. Sesquiterpene lactones and depside were detected in leaf extracts. The higher concentration tested exhibited a marked phytotoxic effect. The extracts induced clastogenic, aneugenic cytotoxic, and potential mutagenic effects. The possible relationships between the classes of compounds found in the extracts and effects on cells and DNA were determined.


Assuntos
Ciclo Celular , Germinação , Lactuca , Extratos Vegetais , Tropaeolum , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Ciclo Celular/efeitos dos fármacos , Germinação/efeitos dos fármacos , Tropaeolum/química , Folhas de Planta/química , Flores/química , Sementes/química
2.
Planta Med ; 90(7-08): 641-650, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843802

RESUMO

Tropaeolum majus (garden nasturtium) is a plant with relevance in phytomedicine, appreciated not only for its pharmaceutical activities, but also for its beautiful leaves and flowers. Here, we investigated the phytochemical composition of senescent nasturtium leaves. Indeed, we identified yellow chlorophyll catabolites, also termed phylloxanthobilins, which we show to contribute to the bright yellow color of the leaves in the autumn season. Moreover, we isolated and characterized the phylloxanthobilins from T. majus, and report the identification of a pyro-phylloxanthobilin, so far only accessible by chemical synthesis. We show that the phylloxanthobilins contribute to bioactivities of T. majus by displaying strong anti-oxidative effects in vitro and in cellulo, and anti-inflammatory effects as assessed by COX-1 and COX-2 enzyme inhibition, similar to other bioactive ingredients of T. majus, isoquercitrin, and chlorogenic acid. Hence, phylloxanthobilins could play a role in the efficacy of T. majus in the treatment of urinary tract infections, an established indication of T. majus. With the results shown in this study, we aid in the completion of the phytochemical profile of T. majus by identifying additional bioactive natural products as relevant components of this medicinal plant.


Assuntos
Anti-Inflamatórios , Antioxidantes , Folhas de Planta , Tropaeolum , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Tropaeolum/química , Folhas de Planta/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 1/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Humanos , Clorofila , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/química
3.
Ann Bot ; 132(7): 1205-1218, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37864498

RESUMO

BACKGROUND AND AIMS: Tropaeolaceae (Brassicales) comprise ~100 species native to South and Central America. Tropaeolaceae flowers have a nectar spur, formed by a late expansion and evagination of the fused proximal region of the perianth (i.e. the floral tube). This spur is formed in the domain of the tube oriented towards the inflorescence axis, which corresponds to the adaxial floral region. However, little is known about the molecular mechanisms responsible for the evolution of spurs in Tropaeolaceae. METHODS: In this study, we examined the spatio-temporal expression of genes putatively responsible for differential patterns of cell division between the adaxial and abaxial floral regions in Tropaeolaceae. These genes include previously identified TCP and KNOX transcription factors and the cell division marker HISTONE H4 (HIS4). KEY RESULTS: We found a TCP4 homologue concomitantly expressed with spur initiation and elaboration. Tropaeolaceae possess two TCP4-like (TCP4L) copies, as a result of a Tropaeolaceae-specific duplication. The two copies (TCP4L1 and TCP4L2) in Tropaeolum longifolium show overlapping expression in the epidermis of reproductive apices (inflorescence meristems) and young floral buds, but only TlTCP4L2 shows differential expression in the floral tube at early stages of spur formation, restricted to the adaxial region. This adaxial expression of TlTCP4L2 overlaps with the expression of TlHIS4. Later in development, only TlTCP4L2 is expressed in the nectariferous tissue of the spur. CONCLUSIONS: Based on these results, we hypothesize that Tropaeolaceae TCP4L genes had a plesiomorphic role in epidermal development and that, after gene duplication, TCP4L2 acquired a new function in spur initiation and elaboration. To better understand spur evolution in Tropaeolaceae, it is critical to expand developmental genetic studies to their sister group, the Akaniaceae, which possess simultaneously an independent duplication of TCP4L genes and a spurless floral tube.


Assuntos
Magnoliopsida , Tropaeolaceae , Tropaeolum , Néctar de Plantas/metabolismo , Tropaeolum/metabolismo , Flores , Magnoliopsida/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293253

RESUMO

Anthocyanins are an important group of water-soluble and non-toxic natural pigments with antioxidant and anti-inflammatory properties that can be found in flowers, vegetables, and fruits. Anthocyanin biosynthesis is regulated by several different types of transcription factors, including the WD40-repeat protein Transparent Testa Glabra 1 (TTG1), the bHLH transcription factor Transparent Testa 8 (TT8), Glabra3 (GL3), Enhancer of GL3 (EGL3), and the R2R3 MYB transcription factor Production of Anthocyanin Pigment 1 (PAP1), PAP2, MYB113, and MYB114, which are able to form MYB-bHLH-WD40 (MBW) complexes to regulate the expression of late biosynthesis genes (LBGs) in the anthocyanin biosynthesis pathway. Nasturtium (Tropaeolum majus) is an edible flower plant that offers many health benefits, as it contains numerous medicinally important ingredients, including anthocyanins. By a comparative examination of the possible anthocyanin biosynthesis regulator genes in nasturtium varieties with different anthocyanin contents, we found that TmPAP2, an R2R3 MYB transcription factor gene, is highly expressed in "Empress of India", a nasturtium variety with high anthocyanin content, while the expression of TmPAP2 in Arabidopsis led to the overproduction of anthocyanins. Protoplast transfection shows that TmPAP2 functions as a transcription activator; consistent with this finding, some of the biosynthesis genes in the general phenylpropanoid pathway and anthocyanin biosynthesis pathway were highly expressed in "Empress of India" and the 35S:TmPAP2 transgenic Arabidopsis plants. However, protoplast transfection indicates that TmPAP2 may not be able to form an MBW complex with TmGL3 and TmTTG1. These results suggest that TmPAP2 may function alone as a key regulator of anthocyanin biosynthesis in nasturtiums.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tropaeolum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tropaeolum/genética , Tropaeolum/metabolismo , Regulação da Expressão Gênica de Plantas , Antioxidantes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Água/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615228

RESUMO

Ornamental plants often gain relevance not only for their decorative use, but also as a source of phytochemicals with interesting healing properties. Herein, spontaneous Centranthus ruber (L.) DC. and Tropaeolum majus L., mainly used as ornamental species but also traditionally consumed and used in popular medicine, were investigated. The aerial parts were extracted with methanol trough maceration, and resultant crude extracts were partitioned using solvents with increasing polarity. As previous studies mostly dealt with the phenolic content of these species, the phytochemical investigation mainly focused on nonpolar constituents, detected with GC-MS. The total phenolic and flavonoid content was also verified, and HPTLC analyses were performed. In order to explore the potential antiarthritic and anti-obesity properties, extracts and their fractions were evaluated for their anti-denaturation effects, with the use of the BSA assay, and for their ability to inhibit pancreatic lipase. The antioxidant properties and the inhibitory activity on the NO production were verified, as well. Almost all the extracts and fractions demonstrated good inhibitory effects on NO production. The n-hexane and dichloromethane fractions from T. majus, as well as the n-hexane fraction from C. ruber, were effective in protecting the protein from heat-induced denaturation (IC50 = 154.0 ± 1.9, 270.8 ± 2.3 and 450.1 ± 15.5 µg/mL, respectively). The dichloromethane fractions from both raw extracts were also effective in inhibiting pancreatic lipase, with IC50 values equal to 2.23 ± 0.02 mg/mL (for C. ruber sample), and 2.05 ± 0.02 mg/mL (T. majus). Obtained results support the traditional use of these species for their beneficial health properties and suggest that investigated plant species could be potential sources of novel antiarthritic and anti-obesity agents.


Assuntos
Fármacos Antiobesidade , Antioxidantes , Pancrelipase , Compostos Fitoquímicos , Extratos Vegetais , Tropaeolum , Valerianaceae , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cloreto de Metileno , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Tropaeolum/química , Valerianaceae/química , Pancrelipase/antagonistas & inibidores , Pancrelipase/química , Desnaturação Proteica/efeitos dos fármacos , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Fármacos Antiobesidade/farmacologia
6.
Am J Bot ; 108(8): 1315-1330, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34458983

RESUMO

PREMISE: Floral spurs are key innovations associated with elaborate pollination mechanisms that have evolved independently several times across angiosperms. Spur formation can shift the floral symmetry from radial to bilateral, as it is the case in Tropaeolum, the only member of the Brassicales with floral nectar spurs. The genetic mechanisms underlying both spur and bilateral symmetry in the family have not yet been investigated. METHODS: We studied flower development and morphoanatomy of Tropaeolum longifolium. We also generated a reference transcriptome and isolated all candidate genes involved in adaxial-abaxial differential growth during spur formation. Finally, we evaluated the evolution of the targeted genes across Brassicales and examined their expression in dissected floral parts. RESULTS: Five sepals initiate spirally, followed by five petals alternate to the sepals, five antesepalous stamens, three antepetalous stamens, and three carpels. Intercalary growth at the common base of sepals and petals forms a floral tube. The spur is an outgrowth from the adaxial region of the tube, lined up with the medial sepal. We identified Tropaeolum specific duplications in the TCP3/4L and STM gene lineages, which are critical for spur formation in other taxa. In addition, we found that TM6 (MADS-box), RL2 (RAD-like7), and KN2/6L2 and OSH6L (KNOX1 genes), have been lost in core Brassicales but retained in Tropaeolum. CONCLUSIONS: Three genes are pivotal during the extreme adaxial-abaxial asymmetry of the floral tube, namely, TlTCP4L2 restricted to the adaxial side where the spur is formed, and TlTCP12 and TlSTM1 to the abaxial side, lacking a spur.


Assuntos
Magnoliopsida , Tropaeolum , Flores/genética , Néctar de Plantas , Polinização
7.
Planta Med ; 87(5): 383-394, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33007786

RESUMO

Tropaeolum tuberosum, commonly known as Mashua, is an herbal remedy used in traditional Andean medicine for the relief of kidney and bladder pain, as well as contusions. This study aimed to evaluate the fractions and isolated compounds from T. tuberosum with analgesic activity mediated by the transient receptor potential vanilloid-1 receptor. A bioguided phytochemical analysis based on NMR/MS was performed to identify the compounds of the n-heptane fractions from samples of purple tubers of T. tuberosum. The transient receptor potential vanilloid-1 agonist and antagonist activity were assessed through the measurement of intracellular Ca2+ in HEK001 cells. The chemical structure determination led to the identification of two alkamides: N-(2-hydroxyethyl)-7Z,10Z,13Z,16Z-docosatetraenamide (1: ) and N-oleoyldopamine (2: ). Both compounds induced increased intracellular calcium flow with IC50 values of 3.2 nM and 7.9 nM, respectively, thus activating the transient receptor potential vanilloid-1 receptor. Our research is the first report to show that these two compounds isolated from T. tuberosum can act as agonists of the transient receptor potential vanilloid-1 receptor, providing scientific evidence for the traditional use of this species in pain relief.


Assuntos
Queratinócitos , Tubérculos , Canais de Cátion TRPV , Tropaeolum , Analgésicos , Capsaicina , Humanos , Canais Iônicos , Queratinócitos/efeitos dos fármacos
8.
Planta ; 252(2): 17, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32666132

RESUMO

MAIN CONCLUSION: Complete plastome sequence of Tropaeolum pentaphyllum revealed molecular markers, hotspots of nucleotide polymorphism, RNA editing sites and phylogenetic aspects Tropaeolaceae Juss. ex DC. comprises approximately 95 species across North and South Americas. Tropaeolum pentaphyllum Lam. is an unconventional and endangered species with occurrence in some countries of South America. Although this species presents nutritional, medicinal and ornamental uses, genetic studies involving natural populations or promising genotypes are practically non-existent. Here, we report the nucleotide sequence of T. pentaphyllum plastome. It represents the first complete plastome sequence of the family Tropaeolaceae to be fully sequenced and analyzed in detail. The sequencing data revealed that the T. pentaphyllum plastome is highly similar to the plastomes of other Brassicales. Notwithstanding, our analyses detected some specific features concerning events of IR expansion and structural changes in some genes such as matK, rpoA, and rpoC2. We also detected 251 SSR loci, nine hotspots of nucleotide polymorphism, and two specific RNA editing sites in the plastome of T. pentaphyllum. Moreover, plastid phylogenomic inference indicated a closed relationship between the families Tropaeolaceae and Akaniaceae, which formed a sister group to Moringaceae-Caricaceae. Finally, our data bring new molecular markers and evolutionary features to be applied in the natural population, germplasm collection, and genotype selection aiming conservation, genetic diversity evaluation, and exploitation of this endangered species.


Assuntos
Evolução Molecular , Genomas de Plastídeos/genética , Plastídeos/genética , Tropaeolum/genética , Marcadores Genéticos/genética , Filogenia
9.
Plant Mol Biol ; 100(1-2): 181-197, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868545

RESUMO

KEY MESSAGE: The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-ß-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-ß-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-ß-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-ß-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-ß-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Sementes/enzimologia , Tropaeolum/enzimologia , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/genética , Germinação , Glicosilação , Glicosiltransferases/química , Modelos Moleculares , Petroselinum/enzimologia , Filogenia , Proteínas de Plantas/química , Homologia Estrutural de Proteína , Especificidade por Substrato
10.
New Phytol ; 224(2): 700-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400160

RESUMO

Lysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient for LPAAT. We estimated the flux control coefficient of LPAAT in a whole plant context by deriving a relationship between it and overall lipid accumulation, given that this process is a exponential. Increasing LPAAT activity resulted in greater TAG accumulation in seeds of between 25% and 29%; altered fatty acid distributions in seed lipids (particularly those of the Kennedy pathway); and a redistribution of label from 14 C-glycerol between phosphoglycerides. Greater LPAAT activity in seeds led to an increase in TAG content despite its low intrinsic flux control coefficient on account of the exponential nature of lipid accumulation that amplifies the effect of the small flux increment achieved by increasing its activity. We have also developed a novel application of metabolic control analysis likely to have broad application as it determines the in planta flux control that a single component has upon accumulation of storage products.


Assuntos
Aciltransferases/metabolismo , Brassica napus/enzimologia , Sementes/química , Triglicerídeos/metabolismo , Aciltransferases/genética , Brassica napus/metabolismo , DNA de Plantas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas , Triglicerídeos/química , Tropaeolum/enzimologia , Tropaeolum/genética
11.
An Acad Bras Cienc ; 90(2): 1775-1787, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694497

RESUMO

The objective of this study was to characterize the nutritional compounds of interest present in vegetables known as non-conventional, in Brazil. The following evaluations were carried out: antioxidant activity, phenolic compounds, vitamin C, calories, carbohydrates, humidity, lipids, proteins, fiber, acidity and quantification of minerals (P, K, Ca, Mg, S, Cu, Fe, Mn, Zn and B). The species studied were Amaranthus hybridus L., Amaranthus viridis L., Basella alba L., Eryngium campestre L., Hibiscus sabdariffa L., Lactuca canadensis L., Rumex acetosa L., Stachys byzantina K. Koch, Tropaeolum majus L. and Xanthosoma sagittifolium L. Representative samples of plant structures of interest were harvested from each species suitable for human consumption such as leaves, flowers and flower buds. The results were submitted to multivariate analysis - principal components analysis (PCA). All the species present nutritional compounds of interest in different levels among the evaluated structures.


Assuntos
Flores/química , Magnoliopsida/química , Valor Nutritivo , Brotos de Planta/química , Verduras/química , Amaranthus/química , Antioxidantes/metabolismo , Ácido Ascórbico/análise , Brasil , Caryophyllales/química , Fibras na Dieta/análise , Eryngium/química , Hibiscus/química , Minerais/análise , Fenóis/análise , Folhas de Planta/química , Rumex/química , Stachys/química , Tropaeolum/química , Xanthosoma/química
12.
Rocz Panstw Zakl Hig ; 69(2): 119-126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29766690

RESUMO

The garden nasturtium (Tropaeolum majus L.) belongs to the family Tropaeolaceae. Native to South America it was brought to Europe in XVI century. It is a plant with numerous healing properties. Medicinal plants such as the garden nasturtium contain trace elements and bioactive compounds which can be easily absorbed by the human body. The flowers and other parts of the garden nasturtium are a good source of micro elements such as potassium, phosphorus, calcium and magnesium, and macro elements, especially of zinc, copper and iron. The essential oil, the extract from the flowers and leaves, and the compounds isolated from these elements have antimicrobial, antifungal, hypotensive, expectorant and anticancer effects. Antioxidant activity of extracts from garden nasturtium is an effect of its high content of compounds such as anthocyanins, polyphenols and vitamin C. Due to its rich phytochemical content and unique elemental composition, the garden nasturtium may be used in the treatment of many diseases for example the illnesses of the respiratory and digestive systems. High content of erucic acid in nasturtium seeds makes it possible to use its oil as treatment in adrenoleukodystrophy. It is also applied in dermatology because it improves the condition of skin and hair. More recently, the flowers of this species have been used as a decorative and edible element of some types of dishes. Aim of the review was to summarize available data concerning garden nasturtium Tropaeolum majus L.


Assuntos
Flores/química , Extratos Vegetais/química , Oligoelementos/química , Tropaeolum/química , Antioxidantes/química , Humanos
13.
Drug Chem Toxicol ; 40(3): 281-285, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27482986

RESUMO

The prevalence of the use of herbal medicines is on the rise across the world, especially amongst pregnant women. A fact that draws attention is that many species commonly used by pregnant women, including the Tropaeolum majus L. (Tropaeolaceae), also present inhibitory activity on the angiotensin-converting enzyme (ACE). Herein, we have investigated the effects of T. majus extract (HETM) on fetal development, evaluating its relationship with possible ACE inhibitory activity. Pregnant Wistar rats were treated with different HETM doses (3, 30 and 300 mg/kg/day) from gestational days 8-20. Rats were sacrificed on the day 20 of pregnancy and the following parameters were evaluated: clinical symptoms of maternal toxicity; maternal body weight; feed and water intake; maternal liver, kidney, and ovary weights, maternal ACE activity and aldosterone levels, live fetuses mean; dead fetuses percentage, fetus weight, and fetal malformation. All pregnant rats treated with high HETM doses showed significant reduction in plasma ACE activity accompanied by a decrease in serum aldosterone levels. Moreover, significant changes in fetal development were observed, including growth retardation and renal damage after 20 days of gestation. Thus, data presented demonstrate the significant effects of the use of HETM on fetal development during pregnancy.


Assuntos
Anormalidades Induzidas por Medicamentos/etiologia , Inibidores da Enzima Conversora de Angiotensina/toxicidade , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/induzido quimicamente , Extratos Vegetais/toxicidade , Tropaeolum/química , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Animais , Relação Dose-Resposta a Droga , Feminino , Idade Gestacional , Exposição Materna/efeitos adversos , Extratos Vegetais/isolamento & purificação , Gravidez , Ratos Wistar
14.
Molecules ; 21(5)2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27136515

RESUMO

BACKGROUND: Tropaeolum pentaphyllum Lam. tubers (Tropaeolaceae) are known and used as a condiment and for the treatment of skin infections in Southern Brazil. However, its activity and composition has not yet been investigated. Thus, different extracts and the essential oil from the tubers were tested against a range of microorganisms. The most active extracts were submitted to chromatographic analysis. METHODS: Hydroalcoholic extract (70%), fractions of it, and the essential oil from the tubers were tested against several bacteria, yeasts and molds, furnishing the corresponding inhibitory, bactericidal and fungicidal minimal concentration values. The most active extracts were submitted to GC-MS investigation. RESULTS: The strongest effects against different strains of microorganisms, such as Gram-positive and negative bacteria, Candida spp. and dermatophytes were observed for the essential oil and the chloroform fraction, with minimal inhibitory concentrations (MICs) well below 200 µg/mL. GC-MS analysis revealed that the major essential oil constituent is benzyl isothiocyanate (BITC), while the chloroform fraction is constituted of BITC, amides, sulfur, fatty acids and its esters, all compounds that may be related to the demonstrated activity. CONCLUSIONS: Overall, the results support the popular use of the plant for the treatment of skin infections, and revealed the main active compounds.


Assuntos
Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Tubérculos/química , Tropaeolum/química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Leveduras/efeitos dos fármacos
15.
J Sci Food Agric ; 96(14): 4702-4712, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26919585

RESUMO

BACKGROUND: The content of individual and total glucosinolates in 65 mashua tuber accessions (Tropaeolum tuberosum) from the germplasm bank at Universidad Nacional de Colombia was determined by reverse phase high-performance liquid chromatography on enzymatically desulfated extracts. The predominant glucosinolate was identified and the possible structure of the glucosinolate present in lower proportion was postulated from evidence obtained by high-performance liquid chromatography/mass spectrometry, 1 H and 13 C nuclear magnetic resonance and bi-dimensional experiments. The biological action of the hydrolysis products generated from the glucosinolates in the accessions that showed a higher content of these compounds was assessed in the presence of Fusarium oxysporum f. sp. dianthi, Rhizoctonia solani and Phytophthora infestans. RESULTS: The total content of glucosinolates ranged between >3.00 × 10-1 and 25.8 µmol g-1 dry matter. p-Methoxybenzyl glucosinolate was identified as the predominant glucosinolate in Colombian mashua accessions; besides, the possible presence of p-hydroxybenzyl glucosinolate was postulated. In vitro assays established an important fungal growth inhibition of the potato pathogen P. infestans. CONCLUSION: The biological action from p-methoxybenzyl glucosinolate and p-hydroxybenzyl glucosinolate found in Colombian mashua accessions depends on their concentration, with the Tt30 accession, characterized for showing the highest content of glucosinolates, being the most promising to control the assessed pathogens. © 2016 Society of Chemical Industry.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Glucosinolatos/química , Glucosinolatos/farmacologia , Tropaeolum/química , Antifúngicos/química , Configuração de Carboidratos , Colômbia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Tropaeolum/genética , Tropaeolum/metabolismo
16.
Biomacromolecules ; 16(7): 2157-67, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26068019

RESUMO

Xyloglucan XG (molecular weight 462 kDa, 1,4-/1,4,6-(pGlc) linked backbone, side chains of 1-pXyl, 1,2-pXyl, 1-p-Gal) was isolated from the seeds of Tropaeolum majus. XG (100 µg/mL) induced terminal cellular differentiation of human keratinocytes, as demonstrated by immunofluorescence staining and Western blot using cytokeratin 10 and involucrin as marker proteins. Differentiation was also induced by XG-derived oligosaccharides (degree of polymerization 7-9). Quantitative real-time polymerase chain reaction (qPCR) revealed the induction of gene expression of typical differentiation markers (cytokeratin, filaggrin, involucrin, loricrin, transglutaminase) in a time-dependent manner. Whole human genome microarray indicated that most of upregulated genes were related to differentiation processes. Microarray findings on selected genes were subsequently confirmed by qPCR. For identification of the molecular target of xyloglucan PAGE of keratinocyte membrane preparations was performed, followed by blotting with fluorescein isothiocyanate-labeled XG. XG interacting proteins were characterized by MS. Peptide fragments of epidermal growth factor receptor (EGFR) and integrin ß4 were identified. Subsequent phospho-kinase array indicated that phosphorylation of EGFR and transcription factor cAMP response element-binding protein (CREB) was decreased in the XG-treated cells. Thus, the XG-induced differentiation of keratinocytes is proposed to be mediated by the inhibition of the phosphorylation of EGFR, leading to a dimished CREB activation, which is essential for the activation of cellular differentiation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Glucanos/farmacologia , Queratinócitos/efeitos dos fármacos , Tropaeolum/química , Xilanos/farmacologia , Diferenciação Celular , Células Cultivadas , Proteínas Filagrinas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Fosforilação/efeitos dos fármacos , Sementes/química
17.
Int J Mol Sci ; 16(1): 805-22, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25561232

RESUMO

Edible flowers are commonly used in human nutrition and their consumption has increased in recent years. The aim of this study was to ascertain the nutritional composition and the content and profile of phenolic compounds of three edible flowers, monks cress (Tropaeolum majus), marigold (Tagetes erecta) and paracress (Spilanthes oleracea), and to determine the relationship between the presence of phenolic compounds and the antioxidant capacity. Proximate composition, total dietary fibre (TDF) and minerals were analysed according to official methods: total phenolic compounds (TPC) were determined with Folin-Ciocalteu's reagent, whereas antioxidant capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and Oxygen Radical Absorbance Capacity (ORAC) assays. In addition, phenolic compounds were characterised by HPLC-DAD-MSn. In relation to the nutritional value, the edible flowers had a composition similar to that of other plant foods, with a high water and TDF content, low protein content and very low proportion of total fat-showing significant differences among samples. The levels of TPC compounds and the antioxidant capacity were significantly higher in T. erecta, followed by S. oleracea and T. majus. Thirty-nine different phenolic compounds were tentatively identified, with flavonols being the major compounds detected in all samples, followed by anthocyanins and hydroxycynnamic acid derivatives. In T. erecta small proportions of gallotannin and ellagic acid were also identified.


Assuntos
Antioxidantes/química , Asteraceae/química , Fenóis/análise , Espectrometria de Massas por Ionização por Electrospray , Tagetes/química , Tropaeolum/química , Antocianinas/análise , Asteraceae/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Flores/química , Flores/metabolismo , Tagetes/metabolismo , Tropaeolum/metabolismo
18.
Nutrients ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337658

RESUMO

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Assuntos
Microbioma Gastrointestinal , Nasturtium , Tropaeolum , Feminino , Humanos , Isotiocianatos/farmacologia , Bactérias , Escherichia coli , Metaboloma
19.
Nat Prod Res ; 38(10): 1812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37309098

RESUMO

A bisphosphonate recently isolated from Tropaeolum tuberosum is almost certainly a contaminant and not a genuine natural product.


Assuntos
Anti-Infecciosos , Tropaeolum
20.
Food Chem ; 404(Pt A): 134631, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444024

RESUMO

Mashua (Tropaeolum tuberosum) is an Andean tuber with a high content of glucosinolates (GLSs). GLSs subjected to biotransformation by plant enzymes or enzymes of the gastrointestinal microbiota give rise to biologically active compounds, to which chemo preventive properties are attributed. In this work, the biotransformation of mashua GLSs was evaluated in vitro by six strains of lactic acid bacteria (LAB) and in vivo using rats with and without previous LAB dosing. The results showed that L. rhamnosus GG utilized the totality of glucosinalbin and glucotropaeolin, and 46.7 % of glucoaubrietin. Four GLSs derivatives were detected. The GLSs were absorbed and metabolized by the rats with low contents in feces (0.02 %) and urine (0.59 %) and were detected up to 3 h after consumption in plasma. The results showed that probiotic bacteria play an important role in transforming GLSs into beneficial compounds for the health of consumers.


Assuntos
Lactobacillales , Tropaeolum , Animais , Ratos , Glucosinolatos , Biotransformação , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA