Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(7): 2950-2973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38816515

RESUMO

The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed. To obtain insights into their mode of inhibition, we structurally and functionally characterized USP28 in the presence of the three different inhibitors AZ1, Vismodegib and FT206. The compounds bind into a common pocket acting as a molecular sink. Our analysis provides an explanation why the two enzymes are inhibited with similar potency while other deubiquitylases are not affected. Furthermore, a key glutamate residue at position 366/373 in USP28/USP25 plays a central structural role for pocket stability and thereby for inhibition and activity. Obstructing the inhibitor-binding pocket by mutation of this glutamate may provide a tool to accelerate future drug development efforts for selective inhibitors of either USP28 or USP25 targeting distinct binding pockets.


Assuntos
Ubiquitina Tiolesterase , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Sítios de Ligação , Piridinas/química , Piridinas/farmacologia , Ligação Proteica , Modelos Moleculares
2.
J Med Chem ; 67(6): 4496-4524, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488146

RESUMO

Dysregulation of the ubiquitin-proteasome systems is a hallmark of various disease states including neurodegenerative diseases and cancer. Ubiquitin C-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is expressed primarily in the central nervous system under normal physiological conditions, however, is considered an oncogene in various cancers, including melanoma, lung, breast, and lymphoma. Thus, UCHL1 inhibitors could serve as a viable treatment strategy against these aggressive cancers. Herein, we describe a covalent fragment screen that identified the chloroacetohydrazide scaffold as a covalent UCHL1 inhibitor. Subsequent optimization provided an improved fragment with single-digit micromolar potency against UCHL1 and selectivity over the closely related UCHL3. The molecule demonstrated efficacy in cellular assays of metastasis. Additionally, we report a ligand-bound crystal structure of the most potent molecule in complex with UCHL1, providing insight into the binding mode and information for future optimization.


Assuntos
Neoplasias , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Mama , Complexo de Endopeptidases do Proteassoma
3.
Int J Biol Macromol ; 263(Pt 1): 130309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382779

RESUMO

Maintaining protein balance within a cell is essential for proper cellular function, and disruptions in the ubiquitin-proteasome pathway, which is responsible for degrading and recycling unnecessary or damaged proteins, can lead to various diseases. Deubiquitinating enzymes play a vital role in regulating protein homeostasis by removing ubiquitin chains from substrate proteins, thereby controlling important cellular processes, such as apoptosis and DNA repair. Among these enzymes, ubiquitin-specific protease 7 (USP7) is of particular interest. USP7 is a cysteine protease consisting of a TRAF region, catalytic region, and C-terminal ubiquitin-like (UBL) region, and it interacts with tumor suppressors, transcription factors, and other key proteins involved in cell cycle regulation and epigenetic control. Moreover, USP7 has been implicated in the pathogenesis and progression of various diseases, including cancer, inflammation, neurodegenerative conditions, and viral infections. Overall, characterizing the functions of USP7 is crucial for understanding the pathophysiology of diverse diseases and devising innovative therapeutic strategies. This article reviews the structure and function of USP7 and its complexes, its association with diseases, and its known inhibitors and thus represents a valuable resource for advancing USP7 inhibitor development and promoting potential future treatment options for a wide range of diseases.


Assuntos
Proteostase , Ubiquitina , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/química , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitina/química , Domínio Catalítico , Ubiquitina Tiolesterase/química
4.
J Mol Biol ; 436(4): 168438, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185323

RESUMO

A mutant of ubiquitin C-terminal hydrolase L1 (UCHL1) detected in early-onset neurodegenerative patients, UCHL1R178Q, showed higher catalytic activity than wild-type UCHL1 (UCHL1WT). Lying within the active-site pocket, the arginine is part of an interaction network that holds the catalytic histidine in an inactive arrangement. However, the structural basis and mechanism of enzymatic activation upon glutamine substitution was not understood. We combined X-ray crystallography, protein nuclear magnetic resonance (NMR) analysis, enzyme kinetics, covalent inhibition analysis, and biophysical measurements to delineate activating factors in the mutant. While the crystal structure of UCHL1R178Q showed nearly the same arrangement of the catalytic residues and active-site pocket, the mutation caused extensive alteration in the chemical environment and dynamics of more than 30 residues, some as far as 15 Å away from the site of mutation. Significant broadening of backbone amide resonances in the HSQC spectra indicates considerable backbone dynamics changes in several residues, in agreement with solution small-angle X-ray scattering (SAXS) analyses which indicate an overall increase in protein flexibility. Enzyme kinetics show the activation is due to a kcat effect despite a slightly weakened substrate affinity. In line with this, the mutant shows a higher second-order rate constant (kinact/Ki) in a reaction with a substrate-derived irreversible inhibitor, Ub-VME, compared to the wild-type enzyme, an observation indicative of a more reactive catalytic cysteine in the mutant. Together, the observations underscore structural plasticity as a factor contributing to enzyme kinetic behavior which can be modulated through mutational effects.


Assuntos
Domínio Catalítico , Cisteína , Doenças Neurodegenerativas , Ubiquitina Tiolesterase , Humanos , Sítios de Ligação/genética , Cisteína/química , Cisteína/genética , Cinética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Espalhamento a Baixo Ângulo , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/genética , Difração de Raios X , Doenças Neurodegenerativas/genética
5.
Nat Commun ; 15(1): 4519, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806474

RESUMO

Protein ubiquitination regulates a wide range of cellular processes. The degree of protein ubiquitination is determined by the delicate balance between ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination. In comparison to the E3-substrate interactions, the DUB-substrate interactions (DSIs) remain insufficiently investigated. To address this challenge, we introduce a protein sequence-based ab initio method, TransDSI, which transfers proteome-scale evolutionary information to predict unknown DSIs despite inadequate training datasets. An explainable module is integrated to suggest the critical protein regions for DSIs while predicting DSIs. TransDSI outperforms multiple machine learning strategies against both cross-validation and independent test. Two predicted DUBs (USP11 and USP20) for FOXP3 are validated by "wet lab" experiments, along with two predicted substrates (AR and p53) for USP22. TransDSI provides new functional perspective on proteins by identifying regulatory DSIs, and offers clues for potential tumor drug target discovery and precision drug application.


Assuntos
Enzimas Desubiquitinantes , Proteoma , Ubiquitinação , Humanos , Proteoma/metabolismo , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Aprendizado Profundo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/química , Especificidade por Substrato , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Aprendizado de Máquina , Ligação Proteica , Sequência de Aminoácidos , Tioléster Hidrolases
6.
Cells ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891087

RESUMO

Ubiquitin-specific protease 14 (USP14), one of the three major proteasome-associated deubiquitinating enzymes (DUBs), is known to be activated by the AKT-mediated phosphorylation at Ser432. Thereby, AKT can regulate global protein degradation by controlling the ubiquitin-proteasome system (UPS). However, the exact molecular mechanism of USP14 activation by AKT phosphorylation at the atomic level remains unknown. By performing the molecular dynamics (MD) simulation of the USP14 catalytic domain at three different states (inactive, active, and USP14-ubiquitin complex), we characterized the change in structural dynamics by phosphorylation. We observed that the Ser432 phosphorylation induced substantial conformational changes of USP14 in the blocking loop (BL) region to fold it from an open loop into a ß-sheet, which is critical for USP14 activation. Furthermore, phosphorylation also increased the frequency of critical hydrogen bonding and salt bridge interactions between USP14 and ubiquitin, which is essential for DUB activity. Structural dynamics insights from this study pinpoint the important local conformational landscape of USP14 by the phosphorylation event, which would be critical for understanding USP14-mediated proteasome regulation and designing future therapeutics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-akt , Ubiquitina Tiolesterase , Fosforilação , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Humanos , Ubiquitina/metabolismo , Ativação Enzimática , Domínio Catalítico , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA