Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 119(1): 508-524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678521

RESUMO

L-Arabinose (L-Ara) is a plant-specific sugar found in cell wall polysaccharides, proteoglycans, glycoproteins, and small glycoconjugates, which play physiologically important roles in cell proliferation and other essential cellular processes. L-Ara is synthesized as UDP-L-arabinose (UDP-L-Ara) from UDP-xylose (UDP-Xyl) by UDP-Xyl 4-epimerases (UXEs), a type of de novo synthesis of L-Ara unique to plants. In Arabidopsis, the Golgi-localized UXE AtMUR4 is the main contributor to UDP-L-Ara synthesis. However, cytosolic bifunctional UDP-glucose 4-epimerases (UGEs) with UXE activity, AtUGE1, and AtUGE3 also catalyze this reaction. For the present study, we first examined the physiological importance of bifunctional UGEs in Arabidopsis. The uge1 and uge3 mutants enhanced the dwarf phenotype of mur4 and further reduced the L-Ara content in cell walls, suggesting that bifunctional UGEs contribute to UDP-L-Ara synthesis. Through the introduction of point mutations exchanging corresponding amino acid residues between AtUGE1 with high UXE activity and AtUGE2 with low UXE activity, two mutations that increase relative UXE activity of AtUGE2 were identified. The crystal structures of AtUGE2 in complex forms with NAD+ and NAD+/UDP revealed that the UDP-binding domain of AtUGE2 has a more closed conformation and smaller sugar-binding site than bacterial and mammalian UGEs, suggesting that plant UGEs have the appropriate size and shape for binding UDP-Xyl and UDP-L-Ara to exhibit UXE activity. The presented results suggest that the capacity for cytosolic synthesis of UDP-L-Ara was acquired by the small sugar-binding site and several mutations of UGEs, enabling diversified utilization of L-Ara in seed plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Citosol , UDPglucose 4-Epimerase , Açúcares de Uridina Difosfato , Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Citosol/enzimologia , Açúcares de Uridina Difosfato/metabolismo , Parede Celular/metabolismo , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , Mutação , Uridina Difosfato Xilose/metabolismo , Uridina Difosfato Xilose/genética
2.
J Biol Chem ; 282(8): 5389-403, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17190829

RESUMO

UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on rhamnogalacturonan-I-directed development in Arabidopsis thaliana. RHM2/MUM4-related genes, RHM1 and RHM3, can be found in the A. thaliana genome. Here we present direct evidence that all three RHM proteins have UDP-D-glucose 4,6-dehydratase, UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase, and UDP-4-keto-L-rhamnose 4-keto-reductase activities in the cytoplasm when expressed in the yeast Saccharomyces cerevisiae. Functional domain analysis revealed that the N-terminal region of RHM2 (RHM2-N; amino acids 1-370) has the first activity and the C-terminal region of RHM2 (RHM2-C; amino acids 371-667) has the two following activities. This suggests that RHM2 converts UDP-d-glucose to UDP-L-rhamnose via an UDP-4-keto-6-deoxy-D-glucose intermediate. Site-directed mutagenesis of RHM2 revealed that mucilage defects in MUM4-1 and MUM4-2 mutant seeds of A. thaliana are caused by abolishment of RHM2 enzymatic activity in the mutant strains and furthermore, that the GXXGXX(G/A) and YXXXK motifs are important for enzymatic activity. Moreover, a kinetic analysis of purified His(6)-tagged RHM2-N protein revealed 5.9-fold higher affinity of RHM2 for UDP-D-glucose than for dTDP-D-glucose, the preferred substrate for dTDP-D-glucose 4,6-dehydratase from bacteria. RHM2-N activity is strongly inhibited by UDP-L-rhamnose, UDP-D-xylose, and UDP but not by other sugar nucleotides, suggesting that RHM2 maintains cytoplasmic levels of UDP-D-glucose and UDP-L-rhamnose via feedback inhibition by UDP-L-rhamnose and UDP-D-xylose.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Parede Celular/metabolismo , Genoma de Planta/fisiologia , Complexos Multienzimáticos/metabolismo , Ramnose/metabolismo , Uridina Difosfato Glucose/metabolismo , Motivos de Aminoácidos/genética , Arabidopsis/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Pectinas/biossíntese , Pectinas/química , Pectinas/genética , Ramnose/química , Ramnose/genética , Saccharomyces cerevisiae/genética , Sementes/química , Sementes/enzimologia , Sementes/genética , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/genética , Uridina Difosfato Xilose/química , Uridina Difosfato Xilose/genética , Uridina Difosfato Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA