Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.500
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 271-294, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080919

RESUMO

Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.


Assuntos
Viroses , Vírus , Animais , Evolução Biológica , Humanos , Mutação , Proteínas Virais , Viroses/genética , Vírus/genética
2.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812912

RESUMO

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Assuntos
Quirópteros , Células-Tronco Pluripotentes , Viroses , Vírus , Animais , Vírus/genética , Transcriptoma , Filogenia
3.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37437570

RESUMO

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Assuntos
Técnicas Citológicas , Técnicas Genéticas , RNA , Animais , Transporte Biológico , Mamíferos/metabolismo , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vírus/genética , Tipagem Molecular , Análise de Sequência de RNA
4.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32186918

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Edição de Genes/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/genética , Vírus/genética , Archaea/genética , Archaea/imunologia , Archaea/virologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coevolução Biológica , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/antagonistas & inibidores , DNA/química , DNA/genética , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Vírus/metabolismo , Vírus/patogenicidade
5.
Cell ; 182(1): 5-6, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649879

RESUMO

Increasingly, cyclic nucleotide second messengers are implicated in antiviral defense systems in bacteria and archaea as well as in eukaryotes. In this issue of Cell, Lowey et al. describe SAVED-a widespread, uncharacterized cyclic nucleotide sensor protein domain that activates cell defense systems. The structure of SAVED reveals links to the CRISPR system, which also generates cyclic nucleotides in response to viral infection.


Assuntos
Bacteriófagos , Vírus , Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Oligonucleotídeos , Vírus/genética
6.
Cell ; 182(3): 786-786.e1, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763187

RESUMO

In order to initiate successful infection, viruses have to transmit and deliver their genome from one host cell or organism to another. To achieve this, enveloped viruses must first fuse their membrane with those of the target host cell. Here, we describe the sequence of events leading to the entry of representative enveloped viruses, highlighting the strategies they use to gain access to the host cell cytosol.


Assuntos
Endocitose , Endossomos/virologia , Fusão de Membrana , Internalização do Vírus , Vírus/metabolismo , Animais , Endossomos/metabolismo , Humanos , Viroses/enzimologia , Viroses/metabolismo , Vírus/genética
7.
Cell ; 181(5): 1046-1061.e6, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32392465

RESUMO

Since their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four infection intermediates in Samba virus (Mimivirus genus, lineage A) as visualized by cryoelectron microscopy (cryo-EM), cryoelectron tomography (cryo-ET), and scanning electron microscopy (SEM). Each of these four intermediates reflects similar morphology to a stage that occurs in vivo. We show that these genome release stages are conserved in other mimiviruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved among disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Assuntos
Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Vírus Gigantes/fisiologia , Capsídeo/metabolismo , Vírus de DNA/genética , Genoma Viral/genética , Proteômica/métodos , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Viroses/genética , Vírus/genética
8.
Annu Rev Cell Dev Biol ; 37: 171-197, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270326

RESUMO

Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health.


Assuntos
Vesículas Extracelulares , Vírus , Vesículas Extracelulares/metabolismo , Vírus/genética
9.
Cell ; 177(5): 1084-1085, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100262

RESUMO

The virome is increasingly recognized as a key part of individual cells (as endogenous retroviruses or persistent infection) and multicellular organisms (as either pathogens or commensals) and, as shown by Gregory et al. (2019), as diverse components of ocean ecosystems.


Assuntos
Afogamento , Microbiota , Vírus/genética , DNA , Humanos
10.
Cell ; 178(4): 779-794, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398336

RESUMO

Metagenomic sequencing is revolutionizing the detection and characterization of microbial species, and a wide variety of software tools are available to perform taxonomic classification of these data. The fast pace of development of these tools and the complexity of metagenomic data make it important that researchers are able to benchmark their performance. Here, we review current approaches for metagenomic analysis and evaluate the performance of 20 metagenomic classifiers using simulated and experimental datasets. We describe the key metrics used to assess performance, offer a framework for the comparison of additional classifiers, and discuss the future of metagenomic data analysis.


Assuntos
Bactérias/classificação , Benchmarking/métodos , Fungos/classificação , Metagenoma/genética , Metagenômica/métodos , Vírus/classificação , Bactérias/genética , Bases de Dados Genéticas , Fungos/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Software , Vírus/genética
11.
Cell ; 174(4): 772-774, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096306

RESUMO

Viruses have evolved inhibitors to counteract the CRISPR immune response, but they are not fully potent and need some time to be expressed after the beginning of infection. In this issue of Cell, Borges et al. and Landsberger et al. show that sequential infection gradually immunosuppresses the host to allow effective CRISPR inhibition.


Assuntos
Bacteriófagos/genética , Vírus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
12.
Cell ; 172(6): 1168-1172, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522738

RESUMO

We know less about viruses than any other lifeform. Fortunately, metagenomics has led to a massive expansion in the known diversity of the virosphere. Here, we discuss how metagenomics has changed our understanding of RNA viruses and present some of the remaining challenges, including characterization of the "dark matter" of divergent viral genomes.


Assuntos
Variação Genética , Genoma Viral/genética , Metagenômica/métodos , Vírus/genética , Evolução Molecular , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus/classificação
13.
Mol Cell ; 83(3): 481-495, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36334591

RESUMO

Viral reproduction is contingent on viral protein synthesis that relies on the host ribosomes. As such, viruses have evolved remarkable strategies to hijack the host translational apparatus in order to favor viral protein production and to interfere with cellular innate defenses. Here, we describe the approaches viruses use to exploit the translation machinery, focusing on commonalities across diverse viral families, and discuss the functional relevance of this process. We illustrate the complementary strategies host cells utilize to block viral protein production and consider how cells ensure an efficient antiviral response that relies on translation during this tug of war over the ribosome. Finally, we highlight potential roles mRNA modifications and ribosome quality control play in translational regulation and innate immunity. We address these topics in the context of the COVID-19 pandemic and focus on the gaps in our current knowledge of these mechanisms, specifically in viruses with pandemic potential.


Assuntos
COVID-19 , Biossíntese de Proteínas , Viroses , Vírus , Humanos , COVID-19/genética , COVID-19/imunologia , Pandemias , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , RNA Viral/genética , RNA Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Viroses/genética , Viroses/imunologia , Vírus/genética , Vírus/imunologia , Ribossomos/genética , Ribossomos/imunologia , Ribossomos/virologia
14.
Genes Dev ; 36(3-4): 108-132, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35193946

RESUMO

With their categorical requirement for host ribosomes to translate mRNA, viruses provide a wealth of genetically tractable models to investigate how gene expression is remodeled post-transcriptionally by infection-triggered biological stress. By co-opting and subverting cellular pathways that control mRNA decay, modification, and translation, the global landscape of post-transcriptional processes is swiftly reshaped by virus-encoded factors. Concurrent host cell-intrinsic countermeasures likewise conscript post-transcriptional strategies to mobilize critical innate immune defenses. Here we review strategies and mechanisms that control mRNA decay, modification, and translation in animal virus-infected cells. Besides settling infection outcomes, post-transcriptional gene regulation in virus-infected cells epitomizes fundamental physiological stress responses in health and disease.


Assuntos
Biossíntese de Proteínas , Vírus , Animais , Interações Hospedeiro-Patógeno/genética , Estabilidade de RNA/genética , Ribossomos/genética , Vírus/genética , Vírus/metabolismo
15.
Nat Rev Mol Cell Biol ; 23(11): 698, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35945273
16.
Cell ; 157(1): 142-50, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24679532

RESUMO

The virome contains the most abundant and fastest mutating genetic elements on Earth. The mammalian virome is constituted of viruses that infect host cells, virus-derived elements in our chromosomes, and viruses that infect the broad array of other types of organisms that inhabit us. Virome interactions with the host cannot be encompassed by a monotheistic view of viruses as pathogens. Instead, the genetic and transcriptional identity of mammals is defined in part by our coevolved virome, a concept with profound implications for understanding health and disease.


Assuntos
Bacteriófagos/fisiologia , Mamíferos/virologia , Microbiota , Vírus/genética , Animais , Bactérias/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Interações Hospedeiro-Patógeno , Humanos , Mamíferos/genética , Mamíferos/imunologia , Vírus/classificação , Vírus/metabolismo
17.
Nature ; 622(7984): 818-825, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821700

RESUMO

Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic-experimental approaches require host polyclonal antibodies to test against1-16, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern17-19. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development ( evescape.org ).


Assuntos
Evolução Molecular , Previsões , Evasão da Resposta Imune , Mutação , Pandemias , Vírus , Humanos , Desenho de Fármacos , Infecções por HIV , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Influenza Humana , Vírus Lassa , Vírus Nipah , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Vírus/genética , Vírus/imunologia
18.
Nat Rev Mol Cell Biol ; 22(9): 585, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34262155
20.
Cell ; 155(4): 744-9, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24209615

RESUMO

Eukarytotic gene expression is frustrated by a series of steps that are generally not observed in prokaryotes and are therefore not essential for the basic chemistry of transcription and translation. Their evolution may have been driven by the need to defend against parasitic nucleic acids.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis , Células Eucarióticas/fisiologia , Células Eucarióticas/virologia , Expressão Gênica , Vírus/genética , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Cromatina/química , Cromatina/metabolismo , Células Eucarióticas/química , Aptidão Genética , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA