Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(24): e0121022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448796

RESUMO

All lentiviruses encode a post-transcriptional transactivator, Rev, which mediates the export of viral mRNA from the nucleus to the cytoplasm and which is required for viral gene expression and viral replication. In the current study, we demonstrate that equine infectious anemia virus (EIAV), an equine lentivirus, encodes a second post-transcriptional transactivator that we designate Grev. Grev is encoded by a novel transcript with a single splicing event that was identified using reverse transcription-PCR (RT-PCR) and RNA-seq in EIAV-infected horse tissues and cells. Grev is about 18 kDa in size, comprises the first 18 amino acids (aa) of Gag protein together with the last 82 aa of Rev, and was detected in EIAV-infected cells. Similar to Rev, Grev is localized to the nucleus, and both are able to mediate the expression of Mat (a recently identified viral protein of unknown function from EIAV), but Rev can mediate the expression of EIAV Gag/Pol, while Grev cannot. We also demonstrate that Grev, similar to Rev, specifically binds to rev-responsive element 2 (RRE-2, located in the first exon of mat mRNAs) to promote nuclear export of mat mRNA via the chromosome region maintenance 1 (CRM1) pathway. However, unlike Rev, whose function depends on its multimerization, we could not detect multimerization of Grev using coimmunoprecipitation (co-IP) or bimolecular fluorescence complementation (BiFC) assays. Together, these data suggest that EIAV encodes two post-transcriptional transactivators, Rev and Grev, with similar, but not identical, functions. IMPORTANCE Nuclear export of viral transcripts is a crucial step for viral gene expression and viral replication in lentiviruses, and this export is regulated by a post-transcriptional transactivator, Rev, that is shared by all lentiviruses. Here, we report that the equine infectious anemia virus (EIAV) encodes a novel viral protein, Grev, and demonstrated that Grev, like Rev, mediates the expression of the viral protein Mat by binding to the first exon of mat mRNAs via the chromosome region maintenance 1 (CRM1) pathway. Grev is encoded by a single-spliced transcript containing two exons, whereas Rev is encoded by a multiple-spliced transcript containing four exons. Moreover, Rev is able to mediate EIAV Gag/Pol expression by binding to rev-responsive element (RRE) located within the Env-coding region, while Grev cannot. Therefore, the present study demonstrates that EIAV encodes two post-transcriptional regulators, Grev and Rev, suggesting that post-transcriptional regulation patterns in lentivirus are diverse and complex.


Assuntos
Anemia Infecciosa Equina , Vírus da Anemia Infecciosa Equina , Transativadores , Animais , Anemia Infecciosa Equina/virologia , Éxons , Produtos do Gene rev/genética , Cavalos/genética , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética , Transativadores/metabolismo , Regulação Viral da Expressão Gênica/genética
2.
J Virol ; 96(20): e0054922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197105

RESUMO

Equine infectious anemia virus (EIAV) and HIV are both members of the Lentivirus genus and are similar in major virological characters. EIAV endangers the horse industry. In addition, EIAV can also be used as a model for HIV research. The maturation of the lentiviral Env protein, which is necessary for viral entry, requires Env to be folded in the endoplasmic reticulum (ER). It is currently unclear how this process is regulated. Mitochondrion-associated endoplasmic reticulum membrane (MAM) is a specialized part of the close connection between the ER and mitochondria, and one of the main functions of MAM is to promote oxidative protein production in the ER. SYNJ2BP is one of the key proteins that make up the MAM, and we found that SYNJ2BP is essential for EIAV replication. We therefore constructed a SYNJ2BP knockout HEK293T cell line in which the number of MAMs is significantly reduced. Moreover, overexpression of SYNJ2BP could increase the number of MAMs. Our study demonstrates that SYNJ2BP can improve the infectivity of the EIAV virus with elevated production of the viral Env protein through increased MAM formation. Interestingly, SYNJ2BP was able to improve the production of not only EIAV Env but also HIV. Further investigation showed that MAMs can provide more ATP and calcium ions, which are essential factors for Env production, to the ER and can also reduce ER stress induced by HIV or EIAV Envs to increase the Env production level in cells. These results may help us to understand the key production mechanisms of lentiviral Env. IMPORTANCE Lentiviral Env proteins, which are rich in disulfide bonds, need to be fully folded in the ER; otherwise, misfolded Env proteins will induce ER stress and be degraded by ER-associated protein degradation (ERAD). To date, it is still unclear about Env production mechanism in the ER. MAM is the structure of closely connection between the ER and mitochondria. MAMs play important roles in the calcium steady state and oxidative stress, especially in the production of oxidative protein. For the first time, we found that SYNJ2BP can promote the production of lentiviral Env proteins by providing the ATP and calcium ions required for oxidative protein production in the ER and by reducing ER stress through facilitating formation of MAMs. These studies shed light on how MAMs improve lentiviral Env production, which will lay the foundation for the study of replication mechanisms in other lentiviruses from the perspective of the cellular organelle microenvironment.


Assuntos
Infecções por HIV , Vírus da Anemia Infecciosa Equina , Cavalos , Humanos , Animais , Produtos do Gene env/metabolismo , Cálcio/metabolismo , Células HEK293 , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Infecções por HIV/metabolismo , Trifosfato de Adenosina/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo
3.
J Virol ; 95(23): e0108721, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495693

RESUMO

Envelope glycoproteins (Envs) of lentiviruses harbor unusually long cytoplasmic tails (CTs). Natural CT truncations always occur in vitro and are accompanied by attenuated virulence, but their effects on viral replication have not been fully elucidated. The Env in equine infectious anemia virus (EIAV) harbors the longest CT in the lentiviral family, and a truncated CT was observed in a live attenuated vaccine. This study demonstrates that CT truncation significantly increased EIAV production, as determined by comparing the virion yields from EIAV infectious clones in the presence and absence of the CT. A significant increase in a cleaved product from the CT-truncated Env precursor, but not the full-length Env, was observed. We further confirmed that the presence of the CT inhibited the cleavage of the Env precursor and found that a functional domain located at the C terminus was responsible for this function. Moreover, CT-truncated Env was mainly localized at the plasma membrane (PM), while full-length Env was mainly localized in the cytoplasm. The CT truncation caused a dramatic reduction in the endocytosis of Env. These results suggest that the CT can modulate the processing and trafficking of EIAV Env and thus regulate EIAV replication. IMPORTANCE The mature lentivirus envelope glycoprotein (Env) is composed of a surface unit (SU) and a transmembrane unit (TM), which are cleaved products of the Env precursor. After mature Env is heterodimerically formed from the cleavage of the Env precursor, it is trafficked to the plasma membrane (PM) for incorporation and virion assembly. Env harbors a long cytoplasmic tail (CT), which has been increasingly found to play multiple roles in the Env biological cycle. Here, we revealed for the first time that the CT of equine infectious anemia virus (EIAV) Env inhibits cleavage of the Env precursor. Simultaneously, the CT promoted Env endocytosis, resulting in weakened Env localization at the PM. We also validated that the CT could significantly decrease EIAV production. These findings suggest that the CT regulates the processing and trafficking of EIAV Env to balance virion production.


Assuntos
Membrana Celular/metabolismo , Anemia Infecciosa Equina/virologia , Genes env/genética , Vírus da Anemia Infecciosa Equina/metabolismo , Vírion/metabolismo , Animais , Endocitose , Genoma Viral , Células HEK293 , HIV-1 , Cavalos , Humanos , Vírus da Anemia Infecciosa Equina/genética , Vacinas Atenuadas , Proteínas do Envelope Viral/genética , Vírion/genética , Replicação Viral
4.
PLoS Pathog ; 16(1): e1008277, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986188

RESUMO

Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.


Assuntos
Anemia Infecciosa Equina/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus da Anemia Infecciosa Equina/fisiologia , Ácido Fítico/metabolismo , Vírion/fisiologia , Sequência de Aminoácidos , Animais , Tomografia com Microscopia Eletrônica , Anemia Infecciosa Equina/virologia , Produtos do Gene gag/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , HIV-1/ultraestrutura , Cavalos , Interações Hospedeiro-Patógeno , Vírus da Anemia Infecciosa Equina/química , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/ultraestrutura , Alinhamento de Sequência , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
5.
BMC Vet Res ; 17(1): 168, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858420

RESUMO

BACKGROUND: Equine infectious anemia (EIA) is a viral disease, caused by the Equine Infectious Anemia virus (EIAV) belonging to the Retroviridae family, genus Lentivirus. Horses (or equids) infected with EIAV are lifelong carriers and they remain contagious for other horses even in the absence of clinical signs. So far, EIAV infection has been reported among horses in North and South America, France, Germany, Italy, Hungary and Romania, with no publication regarding the presence of EIAV in horses in Serbia. To determine the circulation of EIAV among, approximately, the 5000 horses of the Vojvodina region, northern part of Serbia, 316 serum undergone serological testing for EIA. Then, identification and full genome sequencing using next generation sequencing was performed from one EIA positive horse. RESULTS: the 316 sera were tested with 3 different commercial agar gel immunodiffusion (AGID) tests and two different commercial enzyme-linked immunosorbent assay (ELISA). With the three AGID kits, 311 (98.4%) among the 316 tested sera were negative and only five (1.6%) sera were positive for EIA. Some discrepancies were seen for the two ELISA kits tested since one exhibited the same results as AGID test and the second gave 295 sera with negative results, five with a positive result and 16 with doubtful outcome. Phylogenetic analysis performed using the full genome sequence showed that EIAV characterized from a horse in Serbia is different from those identify so fare around the world and form a distinct and separate group together with another EIAV strain. CONCLUSIONS: This study demonstrate for the first time that EIAV is circulating at a low level in the horse population from the Northern part of Serbia. Interestingly, phylogenetic data indicates that this EIAV from the western Balkan region of Europe belongs to a new cluster.


Assuntos
Anemia Infecciosa Equina/epidemiologia , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/isolamento & purificação , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Anemia Infecciosa Equina/virologia , Genoma Viral , Cavalos , Vírus da Anemia Infecciosa Equina/classificação , Filogenia , Sérvia/epidemiologia , Estudos Soroepidemiológicos
6.
Virus Genes ; 56(3): 339-346, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239368

RESUMO

Increasing evidence suggests that DNA methylation has key roles in the replication of retroviruses, including lentiviruses, and pathogenesis of diseases. However, the precise characteristics of CpG islands are not known for many retroviruses. In this study, we compared the distribution of CpG islands among strains of equine infectious anemia virus (EIAV), a lentivirus in the family Retroviridae and a model for HIV research. We identified CpG islands in 32 full-length EIAV genomic sequences obtained from the GenBank database using MethPrimer. Only one CpG island, from 100 to 120 bp, was identified in the genomes of EIAV strains DV10, DLV3-A, and DLV5-10 from China, V26 and V70 from Japan, and IRE H3, IRE F2, IRE F3, and IRE F4 from Ireland. Importantly, the CpG island was located within the Rev gene, which is required for the expression of viral cis-acting elements and the production of new virions. These results suggest that the distribution, length, and genetic properties of CpG islands differ among EIAV strains. Future research should focus on the biological significance of this CpG island within rev to improve our understanding of the precise roles of CpG islands in epigenetic regulation in the species.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Anemia Infecciosa Equina/virologia , Vírus da Anemia Infecciosa Equina/genética , Animais , Genes Virais , Genoma Viral , Genômica/métodos , Cavalos , Mutação , Filogenia , Análise de Sequência de DNA
7.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386282

RESUMO

The equine infectious anemia virus (EIAV) attenuated vaccine was developed by long-term passaging of a field-isolated virulent strain in cross-species hosts, followed by successive cultivation in cells in vitro To explore the molecular mechanism underlying the evolution of the EIAV attenuated vaccine, a systematic study focusing on long-terminal-repeat (LTR) variation in numerous virus strains ranging from virulent EIAV to attenuated EIAV was performed over time both in vitro and in vivo Two hypervariable regions were identified within the U3 region in the enhancer region (EHR) and the negative regulatory element (NRE) and within the R region in the transcription start site (TSS) and the Tat-activating region (TAR). Among these sites, variation in the U3 region resulted in the formation of additional transcription factor binding sites; this variation of the in vitro-adapted strains was consistent with the loss of pathogenicity. Notably, the same LTR variation pattern was observed both in vitro and in vivo Generally, the LTR variation in both the attenuated virus and the virulent strain fluctuated over time in vivo Interestingly, the attenuated-virus-specific LTR variation was also detected in horses infected with the virulent strain, supporting the hypothesis that the evolution of an attenuated virus might have involved branching from EIAV quasispecies. This hypothesis was verified by phylogenetic analysis. The present systematic study examining the molecular evolution of attenuated EIAV from EIAV quasispecies may provide an informative model reflecting the evolution of similar lentiviruses.IMPORTANCE The attenuated EIAV vaccine was the first lentiviral vaccine used to successfully control for equine infectious anemia in China. This vaccine provides an important reference for studying the relationship between EIAV gene variation and changes in biological characteristics. Importantly, the vaccine provides a model for the investigation of lentiviral quasispecies evolution. This study followed the "natural" development of the attenuated EIAV vaccine by use of a systematic analysis of LTR evolution in vitro and in vivo The results revealed that the increase in LTR variation with passaging was accompanied by a decrease in virulence, which indicated that LTR variability might parallel the attenuation of virulence. Interestingly, the attenuated-virus-specific LTR variation was also detected in virulent-strain-infected horses, a finding consistent with those of previous investigations of gp90 and S2 evolution. Therefore, we present a hypothesis that the evolution of the attenuated virus may involve branching from EIAV quasispecies present in vivo.


Assuntos
Anemia Infecciosa Equina/genética , Evolução Molecular , Vírus da Anemia Infecciosa Equina/genética , Sequências Repetidas Terminais , Animais , Anemia Infecciosa Equina/metabolismo , Cavalos , Vírus da Anemia Infecciosa Equina/metabolismo
8.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743377

RESUMO

Human myxovirus resistance protein 2 (huMxB) has been shown to be a determinant type I interferon (IFN)-induced host factor involved in the inhibition of human immunodeficiency virus type 1 (HIV-1) as well as many other primate lentiviruses. This blocking occurs after the reverse transcription of viral RNA and ahead of integration into the host DNA, which is closely connected to the ability of the protein to bind the viral capsid. To date, Mx2s derived from nonprimate animals have shown no capacity for HIV-1 suppression. In this study, we examined the restrictive effect of equine Mx2 (eqMx2) on both equine infectious anemia virus (EIAV) and HIV-1 and investigated possible mechanisms for its specific function. We demonstrated that IFN-α/ß upregulates the expression of eqMx2 in equine monocyte-derived macrophages (eMDMs). The overexpression of eqMx2 significantly suppresses the replication of EIAV, HIV-1, and simian immunodeficiency viruses (SIVs) but not that of murine leukemia virus (MLV). The knockdown of eqMx2 transcription weakens the inhibition of EIAV replication by type I interferon. Interestingly, data from immunofluorescence assays suggest that the subcellular localization of eqMx2 changes following virus infection, from being dispersed in the cytoplasm to being accumulated at the nuclear envelope. Furthermore, eqMx2 blocks the nuclear uptake of the proviral genome by binding to the viral capsid. The N-terminally truncated mutant of eqMx2 lost the ability to bind the viral capsid as well as the restriction effect for lentiviruses. These results improve our understanding of the Mx2 protein in nonprimate animals.IMPORTANCE Previous research has shown that the antiviral ability of Mx2s is confined to primates, particularly humans. EIAV has been shown to be insensitive to restriction by human MxB. Here, we describe the function of equine Mx2. This protein plays an important role in the suppression of EIAV, HIV-1, and SIVs. The antiviral activity of eqMx2 depends on its subcellular location as well as its capsid binding capacity. Our results showed that following viral infection, eqMx2 changes its original cytoplasmic location and accumulates at the nuclear envelope, where it binds to the viral capsid and blocks the nuclear entry of reverse-transcribed proviral DNAs. In contrast, huMxB does not bind to the EIAV capsid and shows no EIAV restriction effect. These studies expand our understanding of the function of the equine Mx2 protein.


Assuntos
Proteínas do Capsídeo/metabolismo , HIV-1/fisiologia , Vírus da Anemia Infecciosa Equina/fisiologia , Proteínas de Resistência a Myxovirus/genética , Replicação Viral/genética , Animais , Proteínas do Capsídeo/antagonistas & inibidores , Citoplasma/fisiologia , Citoplasma/ultraestrutura , Citoplasma/virologia , HIV-1/genética , Cavalos , Vírus da Anemia Infecciosa Equina/genética , Interferon-alfa/genética , Vírus da Leucemia Murina/fisiologia , Macrófagos/virologia , Proteínas de Resistência a Myxovirus/deficiência , Proteínas de Resistência a Myxovirus/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Vírus da Imunodeficiência Símia/fisiologia
9.
Arch Virol ; 163(9): 2385-2394, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29752558

RESUMO

Equine infectious anemia (EIA) has a worldwide distribution, and is widespread in Brazil. The Brazilian Pantanal presents with high prevalence comprising equine performance and indirectly the livestock industry, since the horses are used for cattle management. Although EIA is routinely diagnosed by the agar gel immunodiffusion test (AGID), this serological assay has some limitations, so PCR-based detection methods have the potential to overcome these limitations and act as complementary tests to those currently used. Considering the limited number of equine infectious anemia virus (EIAV) sequences which are available in public databases and the great genome variability, studies of EIAV detection and characterization molecular remain important. In this study we detected EIAV proviral DNA from 23 peripheral blood mononuclear cell (PBMCs) samples of naturally infected horses from Brazilian Pantanal using a semi-nested-PCR (sn-PCR). The serological profile of the animals was also evaluated by AGID and ELISA for gp90 and p26. Furthermore, the EIAV PCR amplified DNA was sequenced and phylogenetically analyzed. Here we describe the first EIAV sequences of the 5' LTR of the tat gene in naturally infected horses from Brazil, which presented with 91% similarity to EIAV reference sequences. The Brazilian EIAV sequences also presented variable nucleotide similarities among themselves, ranging from 93,5% to 100%. Phylogenetic analysis showed that Brazilian EIAV sequences grouped in a separate clade relative to other reference sequences. Thus this molecular detection and characterization may provide information about EIAV circulation in Brazilian territories and improve phylogenetic inferences.


Assuntos
Anemia Infecciosa Equina/virologia , Vírus da Anemia Infecciosa Equina/isolamento & purificação , Animais , Brasil , DNA Viral/genética , Anemia Infecciosa Equina/imunologia , Cavalos , Vírus da Anemia Infecciosa Equina/classificação , Vírus da Anemia Infecciosa Equina/genética , Leucócitos Mononucleares/virologia , Filogenia , Reação em Cadeia da Polimerase
10.
Arch Virol ; 163(10): 2871-2875, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29982961

RESUMO

A codon-optimized equine infectious anemia virus p26 gene was fused to a maltose-binding protein (MBP) and expressed in Escherichia coli for use as an antigen in agar gel immunodiffusion (AGID) and enzyme-linked immunosorbent assay (ELISA) for diagnosis of equine infectious anemia. An analysis of analytical sensitivity and specificity showed that the antigen MBP-p26rec reacted positively with a reference World Organization for Animal Health serum and demonstrated no cross-reaction against sera from vaccinated animals in either test. The diagnostic characteristics were evaluated and presented excellent values. The AGIDrec showed 100% sensitivity and specificity, and the ELISArec showed 100% sensitivity and 99.64% specificity. In addition, MBP-p26rec was stabile after three years of storage at 4 °C, maintaining its immunoreactivity.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Anemia Infecciosa Equina/virologia , Imunodifusão/métodos , Vírus da Anemia Infecciosa Equina/isolamento & purificação , Proteínas Ligantes de Maltose/análise , Proteínas do Core Viral/análise , Animais , Ensaio de Imunoadsorção Enzimática/instrumentação , Anemia Infecciosa Equina/diagnóstico , Anemia Infecciosa Equina/imunologia , Cavalos , Imunodifusão/instrumentação , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/imunologia , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/imunologia , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia
11.
EMBO J ; 32(4): 538-51, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23361315

RESUMO

The ubiquitylation signal promotes trafficking of endogenous and retroviral transmembrane proteins. The signal is decoded by a large set of ubiquitin (Ub) receptors that tether Ub-binding domains (UBDs) to the trafficking machinery. We developed a structure-based procedure to scan the protein data bank for hidden UBDs. The screen retrieved many of the known UBDs. Intriguingly, new potential UBDs were identified, including the ALIX-V domain. Pull-down, cross-linking and E3-independent ubiquitylation assays biochemically corroborated the in silico findings. Guided by the output model, we designed mutations at the postulated ALIX-V:Ub interface. Biophysical affinity measurements using microscale-thermophoresis of wild-type and mutant proteins revealed some of the interacting residues of the complex. ALIX-V binds mono-Ub with a K(d) of 119 µM. We show that ALIX-V oligomerizes with a Hill coefficient of 5.4 and IC(50) of 27.6 µM and that mono-Ub induces ALIX-V oligomerization. Moreover, we show that ALIX-V preferentially binds K63 di-Ub compared with mono-Ub and K48 di-Ub. Finally, an in vivo functionality assay demonstrates the significance of ALIX-V:Ub interaction in equine infectious anaemia virus budding. These results not only validate the new procedure, but also demonstrate that ALIX-V directly interacts with Ub in vivo and that this interaction can influence retroviral budding.


Assuntos
Vírus da Anemia Infecciosa Equina/metabolismo , Complexos Multienzimáticos , Mutação , Ubiquitina-Proteína Ligases , Liberação de Vírus/fisiologia , Animais , Humanos , Vírus da Anemia Infecciosa Equina/genética , Camundongos , Modelos Biológicos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Biochem Biophys Res Commun ; 487(1): 103-108, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28392399

RESUMO

Human lysophosphatidic acid receptor 2 (LPA2), a member of the G-protein coupled receptor family, mediates lysophosphatidic acid (LPA)-dependent signaling by recruiting various G proteins. Particularly, it is directly implicated in the progression of colorectal and ovarian cancer through G protein signaling cascades. To investigate the biochemical binding properties of LPA2 against various alpha subunits of G protein (Gα), a functional recombinant LPA2 was overexpressed in E. coli membrane with a P9∗ expression system, and the purified protein was stabilized with an amphipathic polymer that had been synthesized by coupling octylamine, glucosamine, and diethyl aminoproylamine at the carboxylic groups of poly-γ-glutamic acid. The purified LPA2 stabilized with the amphipathic polymer showed selective binding activity to the various Gα proteins as well as agonist-dependent dissociation from Gαi3. Understanding the binding properties of LPA2 against various Gα proteins advances the understanding of downstream signaling cascades of LPA2. The functional LPA2 prepared using a P9∗ expression system and an amphipathic polymer could also facilitate the development of LPA2-targeting drugs.


Assuntos
Escherichia coli/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Vírus da Anemia Infecciosa Equina/genética , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/fisiologia , Sítios de Ligação , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Ligação Proteica
13.
Biochem Biophys Res Commun ; 486(3): 712-719, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342872

RESUMO

The conjugation of small ubiquitin-like modifier (SUMO) to the target protein, namely, SUMOylation, is involved in the regulation of many important biological events including host-pathogen interaction. Some viruses have evolved to exploit the host SUMOylation machinery to modify their own protein. Retroviral Gag protein plays critical roles in the viral life cycle. The HIV-1 p6 and the Moloney murine leukemia virus CA have been reported to be conjugated with SUMO. In this study, we report for the first time, to our knowledge, the covalent conjugation of equine infectious anemia virus (EIAV) Gag with SUMO. The C-terminal p9 domain of Gag is a main target for SUMOylation and SUMO is attached to multiple sites of p9, including K30 whose mutation abolished p9 SUMOylation completely. The SUMOylation of p9, but not the p9-K30 mutant, was also detected in equine fibroblastic cells ATCC® CCL-57™. Ubc9 and its C93 residue are indispensable for the SUMOylation of p9. Using confocal microscopy, it is found that EIAV Gag localizes primarily, if not exclusively, in the cytoplasm of the cell and the co-localization of EIAV Gag with Ubc9 was observed. Our findings that EIAV Gag is SUMOylated at p9-K30, together with previous findings on the defects of p9-K30 mutant in viral DNA translocation from cytoplasm to the nucleus, suggests that SUMOylation of Gag may be involved in such functions.


Assuntos
Produtos do Gene gag/genética , Vírus da Anemia Infecciosa Equina/genética , Lisina/metabolismo , Proteína SUMO-1/genética , Enzimas de Conjugação de Ubiquitina/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação da Expressão Gênica , Produtos do Gene gag/metabolismo , Células HEK293 , Cavalos , Interações Hospedeiro-Patógeno , Humanos , Vírus da Anemia Infecciosa Equina/metabolismo , Mutação , Domínios Proteicos , Proteína SUMO-1/metabolismo , Transdução de Sinais , Sumoilação , Enzimas de Conjugação de Ubiquitina/metabolismo
14.
PLoS Pathog ; 11(1): e1004610, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569288

RESUMO

Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication-competent lentivirus, which when experimentally evaluated, demonstrated broader immunogenicity that does not equate to higher protective efficacy.


Assuntos
Anemia Infecciosa Equina/prevenção & controle , Cavalos/imunologia , Vírus da Anemia Infecciosa Equina/imunologia , Vacinas Atenuadas/uso terapêutico , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Variação Antigênica/imunologia , Sequência de Bases , Variação Genética , Vírus da Anemia Infecciosa Equina/genética , Dados de Sequência Molecular , Filogenia , Resultado do Tratamento , Proteínas do Envelope Viral/genética , Vacinas Virais/uso terapêutico
15.
Arch Virol ; 162(3): 873-877, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27896562

RESUMO

Equine infectious anemia is an important infectious disease that affects equids worldwide. Control of the disease is currently based on detection of anti-p26 EIAV by Agar Gel Immunodiffusion (AGID). In this work, 62 animals were examined by AGID and nested-PCR using primers for the gag gene. Fifty-three samples (85.5%) were positive by nested-PCR, whereas only 33 samples (53%) were positive for AGID. Fifteen amplicons obtained by nested-PCR were sequenced and the aligned results subjected to phylogenetic analysis. The analysis suggests that the Brazilian EIAV form a cluster with WSU5, EIAVUK and Wyoming strains from United States.


Assuntos
Anemia Infecciosa Equina/virologia , Vírus da Anemia Infecciosa Equina/isolamento & purificação , Animais , Brasil , Cavalos , Vírus da Anemia Infecciosa Equina/classificação , Vírus da Anemia Infecciosa Equina/genética , Filogenia , Reação em Cadeia da Polimerase , Proteínas do Core Viral/genética
16.
Retrovirology ; 13: 9, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26842878

RESUMO

BACKGROUND: The equine infectious anemia virus (EIAV) vaccine is the only attenuated lentiviral vaccine applied on a large scale that has been shown to be effective in controlling the prevalence of EIA in China. This vaccine was developed by successive passaging of a field-isolated virulent strain in different hosts and cultivated cells. To explore the molecular basis for the phenotype alteration of this vaccine strain, we systematically analyzed its genomic evolution during vaccine development. RESULTS: Sequence analysis revealed that the genetic distance between the wild-type strain and six representative strains isolated from key development stages gradually increased with the number of passages. Env gene, but not gag and pol, showed a clear evolutionary flow similar to that of the whole genomes of different generations during the attenuation. Stable mutations were identified in multiple regions of multiple genes along with virus passaging. The adaption of the virus to the growth environment of cultured cells with accumulated genomic and genetic variations was positively correlated with the reduction in pathogenicity and rise of immunogenicity. Statistical analyses revealed significant differences in the frequency of the most stable mutations between in vivo and ex vivo-adapted strains and between virulent and attenuated strains. CONCLUSIONS: These data indicate that EIAV evolution during vaccine development generated an accumulation of mutations under the selective drive force, which helps to better understand the molecular basis of lentivirus pathogenicity and immunogenicity.


Assuntos
Anemia Infecciosa Equina/prevenção & controle , Evolução Molecular , Vírus da Anemia Infecciosa Equina/imunologia , Vacinas Virais/imunologia , Animais , China , Equidae , Cavalos , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/patogenicidade , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Inoculações Seriadas , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
17.
J Gen Virol ; 97(9): 2421-2426, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27411804

RESUMO

Rev, an important accessory protein of equine infectious anaemia virus (EIAV), induces the nuclear export of incompletely spliced viral mRNAs. Rev is translated from the tat-rev mRNA through leaky scanning of the tat CUG. In this study, the function of the Kozak sequence at the beginning of the rev ORF was investigated. Deletion or attenuation of the Kozak sequence resulted in expression of an N-terminal 11 aa-truncated Rev in addition to WT Rev. Truncated Rev displayed weaker promotion of Gag expression and processing than WT Rev. Furthermore, EIAV rescued from an infectious molecular clone (pEIAVUK3) with Kozak attenuation exhibited decreased viral replication in host cells in vitro. These results provide a new understanding of the relationship between EIAV Rev expression and viral replication.


Assuntos
Regulação Viral da Expressão Gênica , Produtos do Gene rev/biossíntese , Produtos do Gene tat/biossíntese , Vírus da Anemia Infecciosa Equina/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Replicação Viral , Linhagem Celular , Produtos do Gene rev/genética , Humanos
18.
J Virol ; 89(13): 6945-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878104

RESUMO

Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anemia Infecciosa Equina/imunologia , Anemia Infecciosa Equina/virologia , Evasão da Resposta Imune , Vírus da Anemia Infecciosa Equina/imunologia , Animais , Cavalos , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/crescimento & desenvolvimento , Modelos Teóricos , Mutação
19.
Arch Virol ; 161(10): 2667-72, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27383210

RESUMO

Equine infectious anemia virus (EIAV) is a member of the genus Lentivirus of the family Retroviridae. Horses are the most susceptible equids to EIAV infection and are therefore the primary hosts of this virus. In contrast, infected donkeys do not develop clinically active equine infectious anemia (EIA). This phenomenon is similar to what has been observed with HIV-1, which fails to induce AIDS in non-human primates. Interestingly, Shen et al. developed a donkey-tropic pathogenic virus strain (EIAVDV117, DV117) by serially passaging a horse-tropic pathogenic strain, EIAVLN40 (LN40), in donkeys. LN40, which was generated by passaging a field isolate in horses, displayed enhanced virulence in horses but caused no clinical symptoms in donkeys. Infection with DV117 induced acute EIA in nearly 100 % of donkeys. Genomic analysis of DV117 revealed a significantly higher frequency of A-to-G substitutions when compared to LN40. Furthermore, detailed analysis of dinucleotide editing showed that A-to-G mutations had a preference for 5'TpA and 5'ApA. These results strongly implicated the activity of the adenosine deaminase, ADAR1, in this type of mutation. Further investigation demonstrated that overexpression of donkey ADAR1 increased A-to-G mutations within the genome of EIAV. Together with our previous finding that multiple mutations in multiple genes are generated in DV117 during its adaptation from horses to donkeys, the present study suggests that ADAR1-induced A-to-G mutations occur during virus adaption to related new hosts contributing to the alteration of EIAV host tropism.


Assuntos
Adaptação Biológica , Adenosina Desaminase/metabolismo , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/patogenicidade , RNA de Cadeia Dupla/metabolismo , Animais , Equidae , Cavalos , Mutação Puntual , Análise de Sequência de DNA , Inoculações Seriadas
20.
Virus Genes ; 52(1): 71-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26739458

RESUMO

Equine infectious anemia virus (EIAV) causes lifelong infections ranging from acutely fatal, to chronic, to asymptomatic. Within infected animals, EIAV is found as a quasispecies. Many experimental studies on EIAV, carried out in the U.S. over the past 70 years, have used either the highly virulent Wyoming (EIAVWYO) field strain or various derivatives of that strain. These infections have provided insights into the variety of genetic changes that accumulate in the env gene and LTR in experimentally infected horses. In the current study, we obtained EIAV sequences from blood samples collected from naturally infected Texas horses between 2000 and 2002. We found surface (SU) and long terminal repeat (LTR) sequences clearly related to EIAVWYO and its cell culture-adapted derivatives. Some blood samples yielded SU or LTR sequences belonging to 2 discrete clusters. In these cases, SU and LTR variation between animals was no greater than sequence variation within animals. In contrast, a portion of integrase (IN) was more homogeneous within animals than between animals. These results suggest that specific selective pressures are applied to SU and LTR sequences, potentially driving generation of two distinct sequence clusters within a horse. We speculate that viruses in one cluster may be more highly expressed and easily transmitted while those in the second cluster support long-term inapparent infection. The presence of homogeneous IN sequences within a horse supports the hypothesis that SU and LTR sequences diverged after the initial infection.


Assuntos
Anemia Infecciosa Equina/virologia , Vírus da Anemia Infecciosa Equina/enzimologia , Vírus da Anemia Infecciosa Equina/genética , Integrases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Variação Genética , Genoma Viral , Cavalos , Vírus da Anemia Infecciosa Equina/classificação , Integrases/química , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA