Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.001
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(6): 1413-1427.e9, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38823390

RESUMO

Influenza B viruses (IBVs) comprise a substantial portion of the circulating seasonal human influenza viruses. Here, we describe the isolation of human monoclonal antibodies (mAbs) that recognized the IBV neuraminidase (NA) glycoprotein from an individual following seasonal vaccination. Competition-binding experiments suggested the antibodies recognized two major antigenic sites. One group, which included mAb FluB-393, broadly inhibited IBV NA sialidase activity, protected prophylactically in vivo, and bound to the lateral corner of NA. The second group contained an active site mAb, FluB-400, that broadly inhibited IBV NA sialidase activity and virus replication in vitro in primary human respiratory epithelial cell cultures and protected against IBV in vivo when administered systemically or intranasally. Overall, the findings described here shape our mechanistic understanding of the human immune response to the IBV NA glycoprotein through the demonstration of two mAb delivery routes for protection against IBV and the identification of potential IBV therapeutic candidates.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Influenza B , Influenza Humana , Neuraminidase , Neuraminidase/imunologia , Humanos , Vírus da Influenza B/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos
3.
Nat Immunol ; 20(5): 613-625, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778243

RESUMO

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Gammainfluenzavirus/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD8-Positivos/virologia , Criança , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Gammainfluenzavirus/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
4.
Immunity ; 53(4): 852-863.e7, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32976769

RESUMO

Influenza B virus (IBV) infections can cause severe disease in children and the elderly. Commonly used antivirals have lower clinical effectiveness against IBV compared to influenza A viruses (IAV). Neuraminidase (NA), the second major surface protein on the influenza virus, is emerging as a target of broadly protective antibodies that recognize the NA active site of IAVs. However, similarly broadly protective antibodies against IBV NA have not been identified. Here, we isolated and characterized human monoclonal antibodies (mAbs) that target IBV NA from an IBV-infected patient. Two mAbs displayed broad and potent capacity to inhibit IBV NA enzymatic activity, neutralize the virus in vitro, and protect against lethal IBV infection in mice in prophylactic and therapeutic settings. These mAbs inserted long CDR-H3 loops into the NA active site, engaging residues highly conserved among IBV NAs. These mAbs provide a blueprint for the development of improved vaccines and therapeutics against IBVs.


Assuntos
Anticorpos Antivirais/imunologia , Domínio Catalítico/imunologia , Vírus da Influenza B/imunologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Leucócitos Mononucleares/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/imunologia
5.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
6.
Proc Natl Acad Sci U S A ; 121(1): e2316964120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147556

RESUMO

Phylogenetically and antigenically distinct influenza A and B viruses (IAV and IBV) circulate in human populations, causing widespread morbidity. Antibodies (Abs) that bind epitopes conserved in both IAV and IBV hemagglutinins (HAs) could protect against disease by diverse virus subtypes. Only one reported HA Ab, isolated from a combinatorial display library, protects against both IAV and IBV. Thus, there has been so far no information on the likelihood of finding naturally occurring human Abs that bind HAs of diverse IAV subtypes and IBV lineages. We have now recovered from several unrelated human donors five clonal Abs that bind a conserved epitope preferentially exposed in the postfusion conformation of IAV and IVB HA2. These Abs lack neutralizing activity in vitro but in mice provide strong, IgG subtype-dependent protection against lethal IAV and IBV infections. Strategies to elicit similar Abs routinely might contribute to more effective influenza vaccines.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Camundongos , Animais , Hemaglutininas , Epitopos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza B
7.
J Virol ; 98(6): e0160423, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780249

RESUMO

The global burden of disease caused by influenza B virus (IBV) is substantial; however, IBVs remain overlooked. Understanding host-pathogen interactions and establishing physiologically relevant models of infection are important for the development and assessment of therapeutics and vaccines against IBV. In this study, we assessed an upper respiratory tract (URT)-restricted model of mouse IBV infection, comparing it to the conventional administration of the virus to the total respiratory tract (TRT). We found that URT infections caused by different strains of IBV disseminate to the trachea but resulted in limited dissemination of IBV to the lungs. Infection of the URT did not result in weight loss or systemic inflammation even at high inoculum doses and despite robust viral replication in the nose. Dissemination of IBV to the lungs was enhanced in mice lacking functional type I IFN receptor (IFNAR2), but not IFNγ. Conversely, in mice expressing the IFN-inducible gene Mx1, we found reduced IBV replication in the lungs and reduced dissemination of IBV from the URT to the lungs. Inoculation of IBV in both the URT and TRT resulted in seroconversion against IBV. However, priming at the TRT conferred superior protection from a heterologous lethal IBV challenge compared to URT priming, as determined by improved survival rates and reduced viral replication throughout the respiratory tract. Overall, our study establishes a URT-restricted IBV infection model, highlights the critical role of IFNs in limiting dissemination of IBV to the lungs, and also demonstrates that the lack of viral replication in the lungs may impact protection from subsequent infections. IMPORTANCE: Our study investigated how influenza B virus (IBV) spreads from the nose to the lungs of mice and the impact this has on disease and protection from re-infection. We found that when applied to the nose only, IBV does not spread very efficiently to the lungs in a process controlled by the interferon response. Priming immunity at the nose only resulted in less protection from re-infection than priming immunity at both the nose and lungs. These insights can guide the development of potential therapies targeting the interferon response as well as of intranasal vaccines against IBV.


Assuntos
Vírus da Influenza B , Pulmão , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Camundongos , Vírus da Influenza B/fisiologia , Vírus da Influenza B/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pulmão/virologia , Pulmão/imunologia , Modelos Animais de Doenças , Interferons/metabolismo , Interferons/imunologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteínas de Resistência a Myxovirus/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/deficiência , Camundongos Endogâmicos C57BL , Interações Hospedeiro-Patógeno/imunologia , Infecções Respiratórias/virologia , Infecções Respiratórias/imunologia , Feminino , Interferon gama/metabolismo , Traqueia/virologia
8.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294251

RESUMO

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Assuntos
Imunidade Adaptativa , Células Epiteliais , Furões , Imunidade Inata , Vírus da Influenza A , Vírus da Influenza B , Interferons , Mucosa Nasal , Animais , Criança , Humanos , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Furões/imunologia , Furões/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/imunologia , Vacinas contra Influenza , Influenza Humana/virologia , Interferons/imunologia , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Linfopoietina do Estroma do Timo/genética , Linfopoietina do Estroma do Timo/imunologia , Células Cultivadas
9.
Hum Genomics ; 18(1): 48, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769549

RESUMO

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Reação em Cadeia da Polimerase Multiplex , Águas Residuárias , Águas Residuárias/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Humanos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/isolamento & purificação , Reprodutibilidade dos Testes , Influenza Humana/diagnóstico , Influenza Humana/virologia , Influenza Humana/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
10.
J Immunol ; 210(8): 1074-1085, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36897229

RESUMO

Influenza A viruses (IAVs) and influenza B viruses (IBVs) cause annual epidemics in human populations with seasonal circulation spikes. Peptide AM58-66GL9 located at residues 58-66 of M1 protein of IAVs has been recognized as an immunodominant T cell epitope with HLA-A*0201 restriction and broadly used as a positive reference in influenza immunity. This peptide also almost completely overlaps with a nuclear export signal (NES) 59-68 in IAV M1, which explains the limited escape mutations under the T cell immune pressure in this region. In this study, we investigated the potential immunogenicity and NES in the corresponding region of IBV. The long peptide covering this region can be recognized by specific T cells and induce robust expression of IFN-γ among HLA-B*1501 donors in vivo, but not in HLA-A*0201 donors. Among a series of truncated peptides derived from this region, we identified an immunodominant HLA-B*1501-restricted T cell epitope BM58-66AF9 (ALIGASICF) in the M1 protein of IBV. Furthermore, the structure of the HLA-B*1501/BM58-66AF9 complex shows that BM58-66AF9 performs a flat and featureless conformation that is similar to AM58-66GL9 presented by HLA-A*0201. In contrast with IAV, the sequence around residues 55-70 of IBV M1 does not contain an NES. Our comparative study on IBVs and IAVs provides new insights into the immune and evolution characteristics of IBVs and may shed light on vaccine development for influenza viruses.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Animais , Sinais de Exportação Nuclear , Epitopos de Linfócito T , Vírus da Influenza B , Antígenos HLA-B/genética , Estágios do Ciclo de Vida
11.
Proc Natl Acad Sci U S A ; 119(42): e2211616119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215486

RESUMO

Influenza B virus primarily infects humans, causing seasonal epidemics globally. Two antigenic variants-Victoria-like and Yamagata-like-were detected in the 1980s, of which the molecular basis of emergence is still incompletely understood. Here, the antigenic properties of a unique collection of historical virus isolates, sampled from 1962 to 2000 and passaged exclusively in mammalian cells to preserve antigenic properties, were determined with the hemagglutination inhibition assay and an antigenic map was built to quantify and visualize the divergence of the lineages. The antigenic map revealed only three distinct antigenic clusters-Early, Victoria, and Yamagata-with relatively little antigenic diversity in each cluster until 2000. Viruses with Victoria-like antigenic properties emerged around 1972 and diversified subsequently into two genetic lineages. Viruses with Yamagata-like antigenic properties evolved from one lineage and became clearly antigenically distinct from the Victoria-like viruses around 1988. Recombinant mutant viruses were tested to show that insertions and deletions (indels), as observed frequently in influenza B virus hemagglutinin, had little effect on antigenic properties. In contrast, amino-acid substitutions at positions 148, 149, 150, and 203, adjacent to the hemagglutinin receptor binding site, determined the main antigenic differences between the Early, Victoria-like, and Yamagata-like viruses. Surprisingly, substitutions at two of the four positions reverted in recent viruses of the Victoria lineage, resulting in antigenic properties similar to viruses circulating ∼50 y earlier. These data shed light on the antigenic diversification of influenza viruses and suggest there may be limits to the antigenic evolution of influenza B virus.


Assuntos
Influenza Humana , Animais , Variação Antigênica/genética , Sítios de Ligação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Vírus da Influenza B/genética , Mamíferos , Filogenia
12.
J Infect Dis ; 230(1): 152-160, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052734

RESUMO

BACKGROUND: The hemagglutination inhibition antibody (HAI) titer contributes only a part of vaccine-induced protection against influenza virus infections. Using causal mediation analysis, we quantified the proportion of vaccine efficacy mediated by postvaccination HAI titers. METHODS: We conducted causal mediation analyses using data from a randomized, active-comparator controlled, phase III, trial of an inactivated, split-virion seasonal quadrivalent influenza vaccine in children conducted from October 2010 to December 2011 in 8 countries. Vaccine efficacy was estimated using a weighted Cox proportional hazards model. Estimates were decomposed into the direct and indirect effects mediated by postvaccination HAI titers. RESULTS: The proportions of vaccine efficacy mediated by postvaccination HAI titers were estimated to be 22% (95% confidence interval, 18%--47%) for influenza A(H1N1), 20% (16%-39%) for influenza A(H3N2), and 37% (26%-85%) for influenza B/Victoria. CONCLUSIONS: HAI titers partially mediate influenza vaccine efficacy against influenza A(H1N1), A(H3N2), and B/Victoria. Our estimates were lower than in previous studies, possibly reflecting expected heterogeneity in antigenic similarity between vaccine and circulating viruses across seasons.


Assuntos
Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Eficácia de Vacinas , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Feminino , Vírus da Influenza B/imunologia , Masculino , Pré-Escolar , Criança , Lactente , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem
13.
J Infect Dis ; 230(1): 131-140, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052711

RESUMO

BACKGROUND: Antigenic similarity between vaccine viruses and circulating viruses is crucial for achieving high vaccine effectiveness against seasonal influenza. New non-egg-based vaccine production technologies could revise current vaccine formulation schedules. We aim to assess the potential benefit of delaying seasonal influenza vaccine virus selection decisions. METHODS: We identified seasons where season-dominant viruses presented increasing prevalence after vaccine formulation had been decided in February for the Northern Hemisphere, contributing to their antigenic discrepancy with vaccine viruses. Using a SEIR (susceptible-exposed-infectious-recovered) model of seasonal influenza in the United States, we evaluated the impact of updating vaccine decisions with more antigenically similar vaccine viruses on the influenza burden in the United States. RESULTS: In 2014-2015 and 2019-2020, the season-dominant A(H3N2) subclade and B/Victoria clade, respectively, presented increasing prevalence after vaccine decisions were already made for the Northern Hemisphere. Our model showed that the updated A(H3N2) vaccine could have averted 5000-65 000 influenza hospitalizations in the United States in 2014-2015, whereas updating the B/Victoria vaccine component did not substantially change influenza burden in the 2019-2020 season. CONCLUSIONS: With rapid vaccine production, revising current timelines for vaccine selection could result in substantial epidemiological benefits, particularly when additional data could help improve the antigenic match between vaccine and circulating viruses.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Influenza Humana , Estações do Ano , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Estados Unidos/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Influenza Humana/virologia , Vírus da Influenza A Subtipo H3N2/imunologia , Estudos Retrospectivos , Criança , Pré-Escolar , Vírus da Influenza B/imunologia , Adulto , Pessoa de Meia-Idade , Hospitalização/estatística & dados numéricos , Adolescente , Adulto Jovem , Idoso , Eficácia de Vacinas , Lactente , Vacinação/estatística & dados numéricos
14.
J Infect Dis ; 230(2): 444-454, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157402

RESUMO

BACKGROUND: The aim of the current study was to determine the safety and immunogenicity of trivalent inactivated influenza vaccine (TIV) alone or formulated with Advax delta inulin adjuvant in those who were older (aged >60 years) or had chronic disease. METHODS: Over 4 consecutive years from 2008 through 2011, adult participants with chronic disease or >60 years of age were recruited into a randomized controlled study to assess the safety, tolerability and immunogenicity of Advax-adjuvanted TIV (TIV + Adj) versus standard TIV. The per-protocol population with ≥1 postbaseline measurement of influenza antibodies comprised 1297 participants, 447 in the TIV and 850 in the TIV + Adj) group. RESULTS: No safety issues were identified. Variables negatively affecting vaccine responses included obesity and diabetes mellitus. Advax adjuvant had a positive impact on anti-influenza immunoglobulin M responses and on H3N2 and B strain seropositivity as assessed by hemagglutination inhibition. CONCLUSIONS: TIV + Adj was safe and well tolerated in individuals with chronic disease. There is an ongoing need for research into improved influenza vaccines for high-risk populations. CLINICAL TRIALS REGISTRATION: Australia New Zealand Clinical Trial Registry: ACTRN 12608000364370.


Assuntos
Anticorpos Antivirais , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Influenza Humana/prevenção & controle , Doença Crônica , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Idoso de 80 Anos ou mais , Adjuvantes de Vacinas/administração & dosagem , Adulto , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Imunogenicidade da Vacina , Testes de Inibição da Hemaglutinação , Adulto Jovem
15.
Clin Infect Dis ; 78(4): 1056-1064, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38051664

RESUMO

BACKGROUND: Influenza circulation during the 2022-2023 season in the United States largely returned to pre-coronavirus disease 2019 (COVID-19)-pandemic patterns and levels. Influenza A(H3N2) viruses were detected most frequently this season, predominately clade 3C.2a1b.2a, a close antigenic match to the vaccine strain. METHODS: To understand effectiveness of the 2022-2023 influenza vaccine against influenza-associated hospitalization, organ failure, and death, a multicenter sentinel surveillance network in the United States prospectively enrolled adults hospitalized with acute respiratory illness between 1 October 2022, and 28 February 2023. Using the test-negative design, vaccine effectiveness (VE) estimates against influenza-associated hospitalization, organ failures, and death were measured by comparing the odds of current-season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative control-patients. RESULTS: A total of 3707 patients, including 714 influenza cases (33% vaccinated) and 2993 influenza- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls (49% vaccinated) were analyzed. VE against influenza-associated hospitalization was 37% (95% confidence interval [CI]: 27%-46%) and varied by age (18-64 years: 47% [30%-60%]; ≥65 years: 28% [10%-43%]), and virus (A[H3N2]: 29% [6%-46%], A[H1N1]: 47% [23%-64%]). VE against more severe influenza-associated outcomes included: 41% (29%-50%) against influenza with hypoxemia treated with supplemental oxygen; 65% (56%-72%) against influenza with respiratory, cardiovascular, or renal failure treated with organ support; and 66% (40%-81%) against influenza with respiratory failure treated with invasive mechanical ventilation. CONCLUSIONS: During an early 2022-2023 influenza season with a well-matched influenza vaccine, vaccination was associated with reduced risk of influenza-associated hospitalization and organ failure.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Adulto , Humanos , Estados Unidos/epidemiologia , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Eficácia de Vacinas , Vírus da Influenza B , Hospitalização , Vacinação , Estações do Ano
16.
J Clin Microbiol ; 62(7): e0020724, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38888305

RESUMO

The Panbio COVID-19/Flu A&B Panel (Abbott) is an in vitro diagnostic rapid test designed for the qualitative detection of nucleocapsid proteins SARS-CoV-2 and nucleoprotein influenza A and B antigens in nasal mid-turbinate (NMT) swab specimens from symptomatic individuals meeting COVID-19 and influenza clinical and/or epidemiological criteria. This study, the largest global one to date using fresh samples, aimed to assess the diagnostic sensitivity and specificity of the Panbio COVID-19/Flu A&B Panel in freshly collected NMT swab specimens from individuals suspected of respiratory viral infection consistent with COVID-19 and/or influenza within the first 5 days of symptom onset compared with results obtained with the cobas SARS-CoV-2 and influenza A/B qualitative assay (cobas 6800/8800 systems), which were tested using nasopharyngeal swab samples. A total of 512 evaluable subjects were enrolled in the COVID-19 cohort across 18 sites, and 1,148 evaluable subjects were enrolled in the influenza cohort across 22 sites in the Asia-Pacific, Europe, and the USA. The Panbio COVID-19/Flu A&B Panel demonstrated a sensitivity of 80.4% and a specificity of 99.7% for COVID-19. For influenza A, the sensitivity and specificity rates were 80.6% and 99.3%, respectively. Likewise, for influenza B, the sensitivity and specificity rates were 80.8% and 99.4%, respectively. In conclusion, the Panbio COVID-19/Flu A&B Panel emerges as a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.4% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B. IMPORTANCE: The Panbio COVID-19/Flu A&B Panel is a suitable rapid test for detecting COVID-19 and influenza in symptomatic subjects across diverse global populations, exhibiting high sensitivity. The assay achieved a sensitivity of 94.0% in samples with Ct ≤24 for COVID-19 and 92.6% in samples with Ct ≤30 for influenza A and B.


Assuntos
Antígenos Virais , COVID-19 , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana , SARS-CoV-2 , Sensibilidade e Especificidade , Humanos , COVID-19/diagnóstico , Influenza Humana/diagnóstico , Influenza Humana/virologia , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Antígenos Virais/análise , Antígenos Virais/imunologia , Adulto Jovem , Adolescente , Idoso , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/imunologia , Criança , Pré-Escolar , Nasofaringe/virologia , Teste para COVID-19/métodos , Lactente , Idoso de 80 Anos ou mais
17.
J Virol ; 97(10): e0124523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37792001

RESUMO

IMPORTANCE: Influenza viruses are a public health concern since they cause seasonal outbreaks and occasionally pandemics. Our study investigates the importance of a protein modification called "palmitoylation" in the replication of influenza B virus. Palmitoylation involves attaching fatty acids to the viral protein hemagglutinin and has previously been studied for influenza A virus. We found that this modification is important for the influenza B virus to replicate, as mutating the sites where palmitate is attached prevented the virus from generating viable particles. Our experiments also showed that this modification occurs in the endoplasmic reticulum. We identified the specific enzymes responsible for this modification, which are different from those involved in palmitoylation of HA of influenza A virus. Overall, our research illuminates the similarities and differences in fatty acid attachment to HA of influenza A and B viruses and identifies the responsible enzymes, which might be promising targets for anti-viral therapy.


Assuntos
Aciltransferases , Retículo Endoplasmático , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza B , Lipoilação , Ácido Palmítico , Replicação Viral , Humanos , Aciltransferases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/química , Vírus da Influenza A/metabolismo , Vírus da Influenza B/química , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/metabolismo , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Lipoilação/genética , Mutação , Ácido Palmítico/metabolismo
18.
J Virol ; 97(10): e0105723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37800945

RESUMO

IMPORTANCE: Vaccines that can slow respiratory virus transmission in the population are urgently needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus. Here, we describe how a recombinant neuraminidase-based influenza virus vaccine reduces transmission in vaccinated guinea pigs in an exposure intensity-based manner.


Assuntos
Vacinas contra Influenza , Neuraminidase , Infecções por Orthomyxoviridae , Animais , Cobaias , Anticorpos Antivirais , Vírus da Influenza B , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Recombinantes , Vacinação
19.
J Virol ; 97(1): e0107022, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533948

RESUMO

Current influenza virus vaccines have to be closely matched to circulating strains to provide good protection, and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding breadth of these antibodies with commonly used immunological methods can be challenging. Here, we analyzed serum samples from a phase I clinical trial (CVIA057, NCT03300050) using an influenza virus protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a large number of group 1 hemagglutinins but also group 2 and influenza B virus hemagglutinins. In CVIA057, different vaccine modalities, including a live attenuated influenza virus vaccine and inactivated influenza virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to induce. IMPORTANCE The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic, or emerging pandemic influenza viruses would be an extremely useful public health tool. Here, we test a technology designed to measure the breadth of antibody responses induced by this new class of vaccines.


Assuntos
Reações Cruzadas , Vacinas contra Influenza , Influenza Humana , Humanos , Adjuvantes Imunológicos , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza B , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vírus da Influenza A
20.
PLoS Pathog ; 18(5): e1010328, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605026

RESUMO

During annual influenza epidemics, influenza B viruses (IBVs) co-circulate with influenza A viruses (IAVs), can become predominant and cause severe morbidity and mortality. Phylogenetic analyses suggest that IAVs (primarily avian viruses) and IBVs (primarily human viruses) have diverged over long time scales. Identifying their common and distinctive features is an effective approach to increase knowledge about the molecular details of influenza infection. The virus-encoded RNA-dependent RNA polymerases (FluPolB and FluPolA) are PB1-PB2-PA heterotrimers that perform transcription and replication of the viral genome in the nucleus of infected cells. Initiation of viral mRNA synthesis requires a direct association of FluPol with the host RNA polymerase II (RNAP II), in particular the repetitive C-terminal domain (CTD) of the major RNAP II subunit, to enable "cap-snatching" whereby 5'-capped oligomers derived from nascent RNAP II transcripts are pirated to prime viral transcription. Here, we present the first high-resolution co-crystal structure of FluPolB bound to a CTD mimicking peptide at a binding site crossing from PA to PB2. By performing structure-based mutagenesis of FluPolB and FluPolA followed by a systematic investigation of FluPol-CTD binding, FluPol activity and viral phenotype, we demonstrate that IBVs and IAVs have evolved distinct binding interfaces to recruit the RNAP II CTD, despite the CTD sequence being highly conserved across host species. We find that the PB2 627 subdomain, a major determinant of FluPol-host cell interactions and IAV host-range, is involved in CTD-binding for IBVs but not for IAVs, and we show that FluPolB and FluPolA bind to the host RNAP II independently of the CTD. Altogether, our results suggest that the CTD-binding modes of IAV and IBV may represent avian- and human-optimized binding modes, respectively, and that their divergent evolution was shaped by the broader interaction network between the FluPol and the host transcriptional machinery.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Vírus da Influenza A/genética , Vírus da Influenza B/metabolismo , Filogenia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase Dependente de RNA/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA