Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324558

RESUMO

The subgroup J avian leukosis virus (ALV-J), a retrovirus, uses its gp85 protein to bind to the receptor, the chicken sodium hydrogen exchanger isoform 1 (chNHE1), facilitating viral invasion. ALV-J is the main epidemic subgroup and shows noteworthy mutations within the receptor-binding domain (RBD) region of gp85, especially in ALV-J layer strains in China. However, the implications of these mutations on viral replication and transmission remain elusive. In this study, the ALV-J layer strain JL08CH3-1 exhibited a more robust replication ability than the prototype strain HPRS103, which is related to variations in the gp85 protein. Notably, the gp85 of JL08CH3-1 demonstrated a heightened binding capacity to chNHE1 compared to HPRS103-gp85 binding. Furthermore, we showed that the specific N123I mutation within gp85 contributed to the enhanced binding capacity of the gp85 protein to chNHE1. Structural analysis indicated that the N123I mutation primarily enhanced the stability of gp85, expanded the interaction interface, and increased the number of hydrogen bonds at the interaction interface to increase the binding capacity between gp85 and chNHE1. We found that the N123I mutation not only improved the viral replication ability of ALV-J but also promoted viral shedding in vivo. These comprehensive data underscore the notion that the N123I mutation increases receptor binding and intensifies viral replication.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/química , Mutação , Galinhas , Isoformas de Proteínas/genética , Proteínas do Envelope Viral/genética
2.
PLoS Pathog ; 20(8): e1012468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39146367

RESUMO

Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/fisiologia , Galinhas/virologia , Leucose Aviária/virologia , Leucose Aviária/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Resistência à Doença/genética , Sistemas CRISPR-Cas , Edição de Genes , Embrião de Galinha , Evolução Molecular , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Fibroblastos/virologia , Fibroblastos/metabolismo
3.
J Biol Chem ; 299(3): 102962, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717079

RESUMO

Subgroup K avian leukosis virus (ALV-K) is a novel subgroup of ALV isolated from Chinese native chickens. As for a retrovirus, the interaction between its envelope protein and cellular receptor is a crucial step in ALV-K infection. Tva, a protein previously determined to be associated with vitamin B12/cobalamin uptake, has been identified as the receptor of ALV-K. However, the molecular mechanism underlying the interaction between Tva and the envelope protein of ALV-K remains unclear. In this study, we identified the C-terminal loop of the LDL-A module of Tva as the minimal functional domain that directly interacts with gp85, the surface component of the ALV-K envelope protein. Further point-mutation analysis revealed that E53, L55, H59, and G70, which are exposed on the surface of Tva and are spatially adjacent, are key residues for the binding of Tva and gp85 and facilitate the entry of ALV-K. Homology modeling analysis indicated that the substitution of these four residues did not significantly impact the Tva structure but impaired the interaction between Tva and gp85 of ALV-K. Importantly, the gene-edited DF-1 cell line with precisely substituted E53, L55, H59, and G70 was completely resistant to ALV-K infection and did not affect vitamin B12/cobalamin uptake. Collectively, these findings not only contribute to a better understanding of the mechanism of ALV-K entry into host cells but also provide an ideal gene-editing target for antiviral study.


Assuntos
Vírus da Leucose Aviária , Doenças das Aves Domésticas , Receptores Virais , Vitamina B 12 , Animais , Vírus da Leucose Aviária/genética , Galinhas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/metabolismo , Complexo Vitamínico B , Vitamina B 12/metabolismo
4.
J Virol ; 97(11): e0115223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902396

RESUMO

IMPORTANCE: 3'UTRs can affect gene transcription and post-transcriptional regulation in multiple ways, further influencing the function of proteins in a unique manner. Recently, ALV-J has been mutating and evolving rapidly, especially the 3'UTR of viral genome. Meanwhile, clinical symptoms caused by ALV-J have changed significantly. In this study, we found that the ALV-J strains containing △-r-TM-type 3'UTR are the most abundant. By constructing ALV-J infectious clones and subgenomic vectors containing different 3'UTRs, we prove that 3'UTRs directly affect viral tissue preference and can promote virus replication as an enhancer. ALV-J strain containing 3'UTR of △-r-TM proliferated fastest in primary cells. All five forms of 3'UTRs can assist intron-containing viral mRNA nuclear export, with similar efficiency. ALV-J mRNA half-life is not influenced by different 3'UTRs. Our results dissect the roles of 3'UTR on regulating viral replication and pathogenicity, providing novel insights into potential anti-viral strategies.


Assuntos
Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular , Vírus da Leucose Aviária , Replicação Viral , Expressão Gênica , Regulação da Expressão Gênica , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/fisiologia
5.
J Virol ; 97(11): e0093723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37909729

RESUMO

IMPORTANCE: The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , MicroRNAs , Doenças das Aves Domésticas , Vírus da Reticuloendoteliose , Animais , Vírus da Reticuloendoteliose/genética , Vírus da Leucose Aviária/genética , Galinhas , MicroRNAs/genética , Replicação Viral
6.
Virol J ; 21(1): 83, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600532

RESUMO

BACKGROUND: Avian leukosis virus Subgroup-J (ALV-J) is a rapidly oncogenic evolving retrovirus infecting a variety of avian species; causing severe economic losses to the local poultry industry. METHODS: To investigate ALV-J, a total of 117 blood samples and 57 tissue specimens of different organs were collected for virological, and pathological identification, serological examinations, molecular characterization, and sequencing analysis. To the best of our knowledge, this is the first detailed report recorded in broiler flocks in Egypt. The present study targets the prevalence of a viral tumor disease circulating in broiler flocks in the El-Sharqia, El-Dakahliya, and Al-Qalyubiyya Egyptian governorates from 2021 to 2023 using different diagnostic techniques besides ALV-J gp85 genetic diversity determination. RESULT: We first isolated ALV-J on chicken embryo rough cell culture; showing aggregation, rounding, and degeneration. Concerning egg inoculation, embryonic death, stunting, and curling were observed. Only 79 serum samples were positive for ALV-J (67.52%) based on the ELISA test. Histopathological investigation showed tumors consist of uniform masses, usually well-differentiated myelocytes, lymphoid cells, or both in the liver, spleen, and kidneys. Immunohistochemical examination showed that the myelocytomatosis-positive signals were in the spleen, liver, and kidney. The PCR assay of ALV-J gp85 confirmed 545 base pairs with only 43 positive samples (75.4%). Two positive samples were sequenced and submitted to the Genbank with accession numbers (OR509852-OR509853). Phylogenetic analysis based on the gp85 gene showed that the ALV-J Dakahlia-2 isolate is genetically related to ALV-EGY/YA 2021.3, ALV-EGY/YA 2021.4, ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9 with amino acid identity percentage 96%, 97%; 96%, 96%; respectively. Furthermore, ALV-J Sharqia-1 isolate is highly genetically correlated to ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9, ALV-J isolate QL1, ALV-J isolate QL4, ALV-J isolate QL3, ALV-EGY/YA 2021.4 with amino acid identity percentage 97%, 97%; 98%, 97%, 97%, 95%; respectively. CONCLUSIONS: This study confirmed that ALV-J infection had still been prevalent in broilers in Egypt, and the genetic characteristics of the isolates are diverse.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Galinhas , Leucose Aviária/patologia , Vírus da Leucose Aviária/genética , Egito/epidemiologia , Filogenia , Evolução Molecular , Aminoácidos/genética
7.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594417

RESUMO

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Assuntos
Vírus da Leucose Aviária , Técnicas de Diagnóstico Molecular , Transcrição Reversa , Animais , Vírus da Leucose Aviária/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
8.
Arch Virol ; 169(7): 155, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951272

RESUMO

Given the high prevalence of avian leukosis virus subgroup K (ALV-K) in chickens in China, the positive rate of ALV-K in local chickens in Henan province was investigated, and the genetic region encoding the glycoprotein gp85 of isolates from positive chickens was analyzed. The positive rate of ALV-K in local chickens in Henan was found to be 87.2% (41/47). Phylogenetic analysis of gp85 sequences revealed six clusters that differed in their host range regions (hr1 and hr2) and variable regions (vr1, vr2, and vr3). Evidence of recombination of hr1, hr2, vr1, vr2, and vr3 was observed between the different clusters. The isolate HN23LS02 appears to have obtained its hr1 and hr2 regions from separate lineages via recombination but without having a significant affect on the replication capacity of the virus.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Especificidade de Hospedeiro , Filogenia , Doenças das Aves Domésticas , Recombinação Genética , Proteínas do Envelope Viral , Animais , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/isolamento & purificação , Galinhas/virologia , Leucose Aviária/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Doenças das Aves Domésticas/virologia , China
9.
J Virol ; 96(6): e0165721, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080427

RESUMO

Avian leukosis virus subgroup J (ALV-J) induces myelocytomas, which can metastasize to multiple organs in diseased chickens. Although metastasis is the primary cause of death in such cases, the mechanism for it remains unclear. Here, we found that interaction between ALV-J surface protein (SU) and doublecortin-like kinase 1 (DCLK1) promotes epithelial-mesenchymal transition (EMT) and cell proliferation. We found that ALV-J can activate EMT in infected cells. Subsequently, proteomics analysis revealed that DCLK1, a well-established putative tumor stem cell marker, which is highly expressed in ALV-J-infected DF-1 cells and chickens, might be a potential factor mediating EMT. Furthermore, using immunofluorescence and immunoprecipitation, we verified that SU interacts with DCLK1. Functional studies suggested that overexpression of DCLK1 increased viral replication and promoted cell proliferation by accelerating the progression of cells from the G0/G1 phase to the S phase of cell cycle, whereas RNA interference of DCLK1 reduced viral replication and arrested cell proliferation by retarding cell cycle progression from the late G1 phase into the S phase in ALV-J-infected cells. Moreover, we demonstrate that the increased accumulation of DCLK1 promotes EMT by increasing the expression of N-cadherin, vimentin, MMP2, and transcription factor Snail1 and decreasing the expression of epithelial marker E-cadherin. These results suggest that ALV-J SU interacts with DCLK1, and accelerates cell proliferation, leading to increased viral replication and ultimately activating EMT, which paves the way for tumor metastasis. IMPORTANCE Tumor metastasis is a major challenge in cancer research, because of its systemic nature and the resistance of disseminated tumor cells to existing therapeutic agents. It is estimated that >90% of mortality from cancer is attributable to metastases. We found that ALV-J can activate EMT, which plays a critical role in cancer metastasis. Subsequently, we identified a tumor stem cell marker, DCLK1, in ALV-J infected cells, which interacts with surface protein (SU) of ALV-J to promote virus replication, activate EMT, and accelerate cell proliferation enabling ALV-J to obtain metastatic ability. Understanding the process of participation of ALV-J in EMT and the route of metastasis will help elucidate the mechanism of virus-induced tumor metastasis and help identify promising molecular targets and key obstacles for ALV-J control and clinical technology development.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Quinases Semelhantes a Duplacortina , Transição Epitelial-Mesenquimal , Proteínas de Membrana , Animais , Leucose Aviária/fisiopatologia , Vírus da Leucose Aviária/genética , Proliferação de Células , Galinhas , Quinases Semelhantes a Duplacortina/metabolismo , Proteínas de Membrana/metabolismo
10.
J Virol ; 96(17): e0071722, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35950858

RESUMO

The geographical spread and inter-host transmission of the subgroup J avian leukosis virus (ALV-J) may be the most important issues for epidemiology. An integrated analysis, including phylogenetic trees, homology modeling, evolutionary dynamics, selection analysis and viral transmission, based on the gp85 gene sequences of the 665 worldwide ALV-J isolates during 1988-2020, was performed. A new Clade 3 has been emerging and was evolved from the dominating Clade 1.3 of the Chinese Yellow-chicken, and the loss of a α-helix or ß-sheet of the gp85 protein monomer was found by the homology modeling. The rapid evolution found in Clades 1.3 and 3 may be closely associated with the adaption and endemicity of viruses to the Yellow-chickens. The early U.S. strains from Clade 1.1 acted as an important source for the global spread of ALV-J and the earliest introduction into China was closely associated with the imported chicken breeders in the 1990s. The dominant outward migrations of Clades 1.1 and 1.2, respectively, from the Chinese northern White-chickens and layers to the Chinese southern Yellow-chickens, and the dominating migration of Clade 1.3 from the Chinese southern Yellow-chickens to other regions and hosts, indicated that the long-distance movement of these viruses between regions in China was associated with the live chicken trade. Furthermore, Yellow-chickens have been facing the risk of infections of the emerging Clades 2 and 3. Our findings provide new insights for the epidemiology and help to understand the critical factors involved in ALV-J dissemination. IMPORTANCE Although the general epidemiology of ALV-J is well studied, the ongoing evolutionary and transmission dynamics of the virus remain poorly investigated. The phylogenetic differences and relationship of the clades and subclades were characterized, and the epidemics and factors driving the geographical spread and inter-host transmission of different ALV-J clades were explored for the first time. The results indicated that the earliest ALV-J (Clade 1.1) from the United States, acted as the source for global spreads, and Clades 1.2, 1.3 and 3 were all subsequently evolved. Also the epidemiological investigation showed that the early imported breeders and the inter-region movements of live chickens facilitated the ALV-J dispersal throughout China and highlighted the needs to implement more effective containment measures.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Filogenia , Doenças das Aves Domésticas , Animais , Leucose Aviária/epidemiologia , Leucose Aviária/transmissão , Vírus da Leucose Aviária/genética , Galinhas/virologia , China , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , Doenças das Aves Domésticas/virologia , Estados Unidos
11.
Avian Pathol ; 52(4): 264-276, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37194644

RESUMO

We previously described cardiomyocyte abnormality caused by Km_5666 strain, a variant of fowl glioma-inducing virus (FGV) prototype, which is an avian leukosis virus (ALV). However, the cardiac involvement appeared to be eradicated from the flock after a few years. An epidemiological survey from 2017 to 2020 was performed to elucidate the current prevalence of the cardiopathogenic strains in this flock. Four of the 71 bantams pathologically examined showed both glioma and cardiomyocyte abnormality, from which three ALV strains were detected. DNA sequencing revealed that several different ALV strains coexisted in each bantam and that the conserved Km_5666 virus fluid also contained at least two different ALV strains. We generated three infectious molecular clones from these samples, named KmN_77_clone_A, KmN_77_clone_B, and Km_5666_clone. The envSU of KmN_77_clone_A shared high sequence identity with that of Km_5666 (94.1%). In contrast, the envSU of KmN_77_clone_B showed >99.2% nucleotide similarity with that of an FGV variant without cardiopathogenicity. Furthermore, Km_5666_clone experimentally reproduced both gliomas and cardiomyocyte abnormality in chickens. From these results, it is suggested that the pathogenic determinant of cardiomyocyte abnormality is located in envSU similar to that of Km_5666. The cloning technique described here is beneficial for evaluating the viral pathogenicity in cases where affected birds are coinfected with several different ALV strains.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Glioma , Doenças das Aves Domésticas , Animais , Vírus da Leucose Aviária/genética , Galinhas , Glioma/veterinária , Células Clonais/patologia
12.
Proc Natl Acad Sci U S A ; 117(4): 2108-2112, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31964810

RESUMO

Avian leukosis virus subgroup J (ALV-J) is an important concern for the poultry industry. Replication of ALV-J depends on a functional cellular receptor, the chicken Na+/H+ exchanger type 1 (chNHE1). Tryptophan residue number 38 of chNHE1 (W38) in the extracellular portion of this molecule is a critical amino acid for virus entry. We describe a CRISPR/Cas9-mediated deletion of W38 in chicken primordial germ cells and the successful production of the gene-edited birds. The resistance to ALV-J was examined both in vitro and in vivo, and the ΔW38 homozygous chickens tested ALV-J-resistant, in contrast to ΔW38 heterozygotes and wild-type birds, which were ALV-J-susceptible. Deletion of W38 did not manifest any visible side effect. Our data clearly demonstrate the antiviral resistance conferred by precise CRISPR/Cas9 gene editing in the chicken. Furthermore, our highly efficient CRISPR/Cas9 gene editing in primordial germ cells represents a substantial addition to genotechnology in the chicken, an important food source and research model.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/imunologia , Proteínas Aviárias/genética , Doenças das Aves Domésticas/imunologia , Trocador 1 de Sódio-Hidrogênio/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/virologia , Leucose Aviária/genética , Leucose Aviária/virologia , Vírus da Leucose Aviária/classificação , Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/imunologia , Sistemas CRISPR-Cas , Galinhas , Resistência à Doença , Feminino , Edição de Genes , Masculino , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Trocador 1 de Sódio-Hidrogênio/imunologia
13.
Genomics ; 114(3): 110371, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462029

RESUMO

The impact of Endogenous retroviruses (ERVs) on chicken disease is not well understood. Here, we systematically identified 436 relatively complete ChERVs from the chicken genome. Subsequently, ChERV transcriptomes were analyzed in chicken after subgroup J avian leukosis virus (ALV-J), avian influenza virus (AIV), Marek's disease virus (MDV) and avian pathogenic Escherichia coli (APEC) infection. We found that about 50%-68% of ChERVs were transcriptionally active in infected and uninfected-samples, although the abundance of most ChERVs is relatively low. Moreover, compared to uninfected-samples, 49, 18, 66 and 17 ChERVs were significantly differentially expressed in ALV-J, AIV, MDV and APEC infected-samples, respectively. These findings may be of significance for understanding the role and function of ChERVs to response the pathogenic microorganism infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Retrovirus Endógenos , Doenças das Aves Domésticas , Animais , Galinhas/genética , Leucose Aviária/genética , Transcriptoma , Doenças das Aves Domésticas/genética , Vírus da Leucose Aviária/genética
14.
Retrovirology ; 19(1): 19, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002842

RESUMO

BACKGROUND: Avian leukosis virus (ALV) is an infectious retrovirus, that mainly causes various forms of tumours, immunosuppression, a decreased egg production rate and slow weight gain in poultry. ALV consists of 11 subgroups, A-K, among which ALV-K is an emerging subgroup that has become prevalent in the past 10 years. Most ALV-K isolates showed weak replication ability and pathogenicity. In this study, the weak replication ability of ALV-K was explored from the perspective of the interaction between ALV-K gp85 and the Tva receptor. METHODS: Fourteen soluble recombinant ALV-A/K gp85 chimeric proteins were constructed by substituting the sequence difference regions (hr1, hr2 and vr3) of the ALV-A gp85 protein with the skeleton ALV-K gp85 protein for co-IP and competitive blocking tests. RESULTS: The binding capacity of ALV-K gp85 to Tva was significantly weaker than that of ALV-A gp85 (P < 0.05) and the key amino acid sites 199-205, 269, 319, 321 and 324 of ALV-K env contributed to the weaker replication capacity of ALV-K than ALV-A. CONCLUSIONS: This is the first study to reveal the molecular factors of the weak replication ability of ALV-K from the perspective of the interaction of ALV-K gp85 to Tva, providing a basis for further elucidation of the infection mechanism of ALV-K.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Aminoácidos/metabolismo , Animais , Leucose Aviária/metabolismo , Vírus da Leucose Aviária/genética , Galinhas , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
15.
J Gen Virol ; 103(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130137

RESUMO

Avian leukosis virus (ALV) is a retrovirus that induces tumours in infected birds; ALV is divided into different subgroups according to the env gene and cellular tropism. In general, ALV subgroup J (ALV-J) is considered to be the most pathogenic and prevalent subgroup while subgroup K (ALV-K), a newly identified subgroup, only causes mild symptoms. To illuminate the roles of the env viral gene and LTR sequence in pathogenic differences between ALV-J and ALV-K, rescued ALV-J strain rSDAU1005, rescued ALV-K strain rJS11C1, and recombinant strains rENV(J)-LTR(K) and rENV(K)-LTR(J) were characterized and investigated in this study. Among rescued viruses, rSDAU1005 had the highest replication efficiency while rJS11C1 replicated the slowest (replication efficiency rankings were rSDAU1005 >rENV(K)-LTR(J)>rENV(J)-LTR(K)>rJS11 C1). The luciferase reporter gene assay results showed that the promoter activity of ALV-K LTR was lower than that of the ALV-J LTR promoter, which may have accounted for the slower replication efficiency of ALV-K. Pathogenicity of the four rescued viruses was determined via inoculating the yolk sacs of specific-pathogen-free chickens. The results demonstrated that all four viruses were pathogenic; rSDAU1005 caused the most severe growth retardation and immunosuppression. rENV(J)-LTR(K) was more pathogenic when compared to rENV(K)-LTR(J), indicating that env and the LTR sequence play important roles in pathogenicity between ALV-K and ALV-J. Additionally, env seemed to especially play a role in ALV-K pathogenesis. This study provided scientific data and insight to improve detection methods and judgement criteria in ALV clearance and surveillance.


Assuntos
Vírus da Leucose Aviária/genética , Leucose Aviária/virologia , Genes env , Proteínas do Envelope Viral/genética , Animais , Aves
16.
Vet Res ; 53(1): 49, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739589

RESUMO

Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter mutation. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT promoter in each ALV-J tumors tested had a mutation of -183 bp C > T, and 36.0% (9/25) of the tumors also had mutations of -184 bp T > C, -73 bp::GGCCC and -56 bp A > T in the chTERT promoter, which formed the binding sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT-qPCR and Western blotting showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the molecular mechanism of chTERT in ALV-J tumorigenesis.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Telomerase , Animais , Leucose Aviária/genética , Vírus da Leucose Aviária/genética , Galinhas/genética , Metilação , Mutação , Doenças das Aves Domésticas/genética , Regiões Promotoras Genéticas , Telomerase/genética
17.
Arch Virol ; 167(12): 2613-2621, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36070017

RESUMO

Infection with recombinant avian leukosis virus (ALV) has previously been linked to malignancies and immunosuppression. However, the processes behind the unique pathophysiology of recombinant ALV are poorly understood. In this study, we analyzed gene expression patterns in chicken fibroblast cells (CEFs) infected with the recombinant ALV isolate GX14FF03 and used the RNA-seq technique to perform a complete analysis of the transcribed mRNAs. A total of 907 significant differentially expressed genes (SDEGs) were identified. Among these SDEGs, the most significantly upregulated gene was interleukin 8-like 1 (IL8L1), while the most significantly downregulated gene was fibroblast growth factor 16 (FGF16). The 907 SDGEs were highly enriched (p < 0.05) for 252 Gene Ontology (GO) terms, including 197 BP, 3 CC, and 52 MF. According to KEGG data analysis, SDEGs are implicated in eight significant pathways (p < 0.05). Furthermore, protein-protein interaction (PPI) network analysis revealed that IL8L1 interacts with 17 genes. These findings shed light on the molecular mechanisms involved in recombinant ALV infection by showing the mRNA expression profile in CEFs infected with GX14FF03 virus.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Animais , Embrião de Galinha , Vírus da Leucose Aviária/genética , Galinhas , Fibroblastos/metabolismo
18.
Arch Virol ; 167(4): 1169-1174, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35301570

RESUMO

The current prevalence of avian leukosis virus (ALV) in fancy chickens in Germany is unknown. Therefore, 537 cloacal swabs from 50 purebred fancy-chicken flocks in Saxony were tested for the presence of the ALV p27 protein using a commercial antigen-capture ELISA. The detection rate was 28.7% at the individual-animal level and 56.0% at the flock level. Phylogenetic analysis of PCR products obtained from 22 different flocks revealed the highest similarity to ALV subtype K. When classifying breeds by their origin, ALV detection rates differed significantly. Evaluation of questionnaire data revealed no significant differences between ALV-positive and negative flocks regarding mortality.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Animais , Leucose Aviária/epidemiologia , Vírus da Leucose Aviária/genética , Galinhas , Alemanha/epidemiologia , Filogenia
19.
Avian Pathol ; 51(2): 113-119, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34807789

RESUMO

The laying hen has been used as a model for ovarian adenocarcinoma (OAC) in women. Previous work has shown an association between expression of endogenous retroviral proteins and elevated envelope mRNA and occurrence of OAC in humans, but causality has not been demonstrated. The objective of this study was to determine whether there is a similar association between retrovirus presence and OAC in a commercial laying hen flock at the University of Illinois Poultry Research facility with a history of a high OAC prevalence in older hens. Laying hens of three age strata were randomly selected for a cross-sectional study. Blood samples were collected, and serum was tested for antigens of endogenous or exogenous avian leukosis virus (ALV) by ELISA. Birds were humanely euthanized, and spleens, ovaries, and any tissues with gross lesions were sampled. Ovaries and gross lesions were examined histologically and spleens were used for RT-PCR to detect endogenous ALV via ALV-E env mRNA expression. Overall, hens with OAC were 5.2 times more likely to be ALV positive than hens without OAC (95% C.I. 2.06-13.14). Controlled for age, OAC positive hens were 3.6 times more likely to be positive for ALV via antigen-capture ELISA (95% C.I. 1.08-11.96). Endogenous ALV-E in hens may be analogous to human endogenous retroviruses, which have also been associated with OAC in women. Further studies to establish causation are warranted to better understand the potential for laying hens to serve as a laboratory model for viral-induced ovarian tumours in humans. RESEARCH HIGHLIGHTSOAC in hens was associated with age, seropositivity for ALV, and endogenous ALV mRNA expression.Older hens with OAC were more likely to be ALV seropositive by ELISA and ALV-E mRNA-positive.Associations between OAC, age, and endogenous retrovirus expression have been reported in humans.These findings support the use of hens as models for OAC in humans.


Assuntos
Adenocarcinoma , Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Adenocarcinoma/veterinária , Animais , Vírus da Leucose Aviária/genética , Galinhas , Estudos Transversais , Feminino
20.
Appl Microbiol Biotechnol ; 106(2): 729-742, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971411

RESUMO

Avian leukosis, caused by avian leukosis virus (ALV), is an infectious tumor disease and severely hinders the development of the poultry industry. The use of Lactobacillus plantarum (L. plantarum) could effectively alleviate viremia in the early period of J subgroup ALV (ALV-J) infection. In this study, an invasive L. plantarum NC8 expressing Gp85 protein of ALV-J was constructed. After chickens were orally administered the recombinant invasive NC8, the levels of expression of CD4+ and CD8+ T lymphocytes in peripheral blood and spleen by flow cytometry and the proliferation ability of splenocytes by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were examined, and the contents of cytokines, the anti-ALV-J antibody in serum, and mucosal antibody sIgA in intestinal lavage fluid were detected by enzyme-linked immunosorbent assay (ELISA). The immunoprotective efficiency was evaluated by monitoring the infection rate, the percent of cloacal swabs and survival, body weight gain, the organ indexes, and relative virus loads after challenge with ALV-J. The results showed that the recombinant invasive strain (FnBPA-gp85) could promote the expression levels of the CD8+T cells in peripheral blood and spleen, the proliferation of splenocytes, the secretions of cytokines interleukin 2 (IL-2) and γ-interferon (IFN-γ), and the production of IgG and sIgA compared with the PBS and FnBPA control groups in chickens. The FnBPA-gp85 group was exhibited the highest immune protection against ALV-J infection. The above results indicated that the recombinant invasive NC8 could promote the cellular immunity, humoral immunity, and mucosal immunity responses in chicken and provide a new method for exploring the live vaccine against ALV-J.Key points• The FnBPA-gp85 strain could enhance cellular immunity response.• The FnBPA-gp85 strain could improve the immune protection against ALV-J infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Lactobacillus plantarum , Doenças das Aves Domésticas , Animais , Anticorpos Antivirais , Leucose Aviária/prevenção & controle , Vírus da Leucose Aviária/genética , Galinhas , Doenças das Aves Domésticas/prevenção & controle , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA