Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(13)2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620577

RESUMO

The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.


Assuntos
Doenças das Valvas Cardíacas/embriologia , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/embriologia , Valvas Cardíacas/patologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Doenças das Valvas Cardíacas/metabolismo , Valvas Cardíacas/metabolismo , Hemodinâmica/fisiologia , Humanos
2.
Development ; 146(12)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201182

RESUMO

The Pitx2 gene encodes a homeobox transcription factor that is required for mammalian development. Disruption of PITX2 expression in humans causes congenital heart diseases and is associated with atrial fibrillation; however, the cellular and molecular processes dictated by Pitx2 during cardiac ontogeny remain unclear. To characterize the role of Pitx2 during murine heart development we sequenced over 75,000 single cardiac cell transcriptomes between two key developmental timepoints in control and Pitx2 null embryos. We found that cardiac cell composition was dramatically altered in mutants at both E10.5 and E13.5. Interestingly, the differentiation dynamics of both anterior and posterior second heart field-derived progenitor cells were disrupted in Pitx2 mutants. We also uncovered evidence for defects in left-right asymmetry within atrial cardiomyocyte populations. Furthermore, we were able to detail defects in cardiac outflow tract and valve development associated with Pitx2 Our findings offer insight into Pitx2 function and provide a compilation of gene expression signatures for further detailing the complexities of heart development that will serve as the foundation for future studies of cardiac morphogenesis, congenital heart disease and arrhythmogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/embriologia , Coração/embriologia , Proteínas de Homeodomínio/fisiologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/fisiologia , Alelos , Animais , Átrios do Coração , Cardiopatias Congênitas/genética , Proteínas de Homeodomínio/genética , Camundongos , Mutação , Miocárdio/metabolismo , Proteínas Nucleares/metabolismo , Organogênese , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma , Proteína Homeobox PITX2
3.
Dev Dyn ; 250(10): 1432-1449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33811421

RESUMO

BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and ß-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of ß-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of ß-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased ß-catenin activities. The ß-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain ß-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear ß-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Valvas Cardíacas/embriologia , Prolapso da Valva Mitral/metabolismo , Organogênese/fisiologia , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células HEK293 , Valvas Cardíacas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Prolapso da Valva Mitral/genética , Fenótipo , Transdução de Sinais/fisiologia
4.
Development ; 145(18)2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30111655

RESUMO

In vivo genomic engineering is instrumental for studying developmental biology and regenerative medicine. Development of novel systems with more site-specific recombinases (SSRs) that complement with the commonly used Cre-loxP would be valuable for more precise lineage tracing and genome editing. Here, we introduce a new SSR system via Nigri-nox. By generating tissue-specific Nigri knock-in and its responding nox reporter mice, we show that the Nigri-nox system works efficiently in vivo by targeting specific tissues. As a new orthogonal system to Cre-loxP, Nigri-nox provides an additional control of genetic manipulation. We also demonstrate how the two orthogonal systems Nigri-nox and Cre-loxP could be used simultaneously to map the cell fate of two distinct developmental origins of cardiac valve mesenchyme in the mouse heart, providing dynamics of cellular contribution from different origins for cardiac valve mesenchyme during development. This work provides a proof-of-principle application of the Nigri-nox system for in vivo mouse genomic engineering. Coupled with other SSR systems, Nigri-nox would be valuable for more precise delineation of origins and cell fates during development, diseases and regeneration.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Engenharia Genética/métodos , Valvas Cardíacas/embriologia , Mesoderma/embriologia , Animais , Antígenos CD/metabolismo , Sistemas CRISPR-Cas/genética , Caderinas/metabolismo , Células Endoteliais/citologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL
5.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29853617

RESUMO

Signaling interactions between the myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Embrião de Mamíferos/embriologia , Endocárdio/embriologia , Valvas Cardíacas/embriologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Morfogenética Óssea 2/genética , Embrião de Mamíferos/citologia , Endocárdio/citologia , Valvas Cardíacas/citologia , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , Receptores Notch/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
6.
Mol Cell Proteomics ; 18(9): 1782-1795, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31249105

RESUMO

The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-ß2 (TGFß2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfß2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.


Assuntos
Endocárdio/embriologia , Endocárdio/metabolismo , Valvas Cardíacas/embriologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzazepinas/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Endocárdio/citologia , Endocárdio/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Valvas Cardíacas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos Mutantes , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Reprodutibilidade dos Testes
7.
FASEB J ; 33(1): 696-710, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044923

RESUMO

The proper development of atrioventricular (AV) valves is critical for heart morphogenesis and for the formation of the cardiac conduction system. Defects in AV valve development are the most common type of congenital heart defect. Cardiac troponin I ( ctnni), a structural and regulatory protein involved in cardiac muscle contraction, is a subunit of the troponin complex, but the functions and molecular mechanisms of ctnni during early heart development remain unclear. We created a knockout zebrafish model in which troponin I type 1b ( tnni1b) ( Tnni-HC, heart and craniofacial) was deleted using the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein system. In the homozygous mutant, the embryos showed severe pericardial edema, malformation of the heart tube, reduction of heart rate without contraction and with almost no blood flow, heart cavity congestion, and lack of an endocardial ring or valve leaflet, resulting in 88.8 ± 6.0% lethality at 7 d postfertilization. Deletion of tnni1b caused the abnormal expression of several markers involved in AV valve development, including bmp4, cspg2, has2, notch1b, spp1, and Alcam. Myocardial re-expression of tnni1b in mutants partially rescued the pericardial edema phenotype and AV canal (AVC) developmental defects. We further showed that tnni1b knockout in zebrafish and ctnni knockdown in rat h9c2 myocardial cells inhibited cardiac wnt signaling and that myocardial reactivation of wnt signaling partially rescued the abnormal expression of AVC markers caused by the tnni1b deletion. Taken together, our data suggest that tnni1b plays a vital role in zebrafish AV valve development by regulating the myocardial wnt signaling pathway.-Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of myocardial wnt signaling pathway.


Assuntos
Nó Atrioventricular/patologia , Embrião não Mamífero/patologia , Valvas Cardíacas/patologia , Miocárdio/patologia , Troponina I/antagonistas & inibidores , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/antagonistas & inibidores , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Nó Atrioventricular/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Miocárdio/metabolismo , Organogênese , Ratos , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Ultrasound Obstet Gynecol ; 56(6): 850-856, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31875324

RESUMO

OBJECTIVES: Prenatal diagnosis of coarctation of the aorta (CoA) is associated with reduced mortality and morbidity, however, accurate prenatal prediction remains challenging. To date, studies have used retrospective measurements of the outflow tracts to evaluate their potential to predict CoA. Our primary objective was to evaluate prospectively acquired measurements of the outflow tracts in fetuses with prenatally suspected CoA. A secondary aim was to report the postnatal prevalence of bicuspid aortic valve in this cohort. METHODS: Pregnancies with suspicion of isolated CoA and with a minimum of 6 months' postnatal follow-up available were identified from the cardiac database of a tertiary fetal cardiology center in the UK, between January 2002 and December 2017. Measurement of the aortic valve, pulmonary valve, distal transverse aortic arch (DTAA) and arterial duct (AD) diameters were undertaken routinely in fetuses with suspected CoA during the study period. Z-scores were computed using published reference ranges based on > 7000 fetuses from our own unit. RESULTS: Of 149 pregnancies with prenatally suspected CoA included in the study, CoA was confirmed within 6 months after birth in 77/149 (51.7%) cases. DTAA diameter Z-score and the Z-score of second-trimester DTAA/AD diameter ratio were smaller in fetuses with postnatally confirmed CoA than those in false-positive cases (-2.8 vs -1.9; P = 0.039 and -3.13 vs -2.61; P = 0.005, respectively). Multiple regression analysis demonstrated that the Z-scores of DTAA and AD diameters were the only significant predictors of postnatal CoA (P = 0.001). Bicuspid aortic valve was identified in 30% of the false-positive cases. CONCLUSIONS: Measurement of DTAA and AD diameter Z-scores can be used to ascertain risk for postnatal CoA in a selected cohort. The high incidence of bicuspid aortic valve in false-positive cases merits further study with respect to both etiology and longer-term significance. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.


Assuntos
Coartação Aórtica/diagnóstico por imagem , Ecocardiografia/estatística & dados numéricos , Coração Fetal/embriologia , Valvas Cardíacas/diagnóstico por imagem , Ultrassonografia Pré-Natal/estatística & dados numéricos , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/embriologia , Coartação Aórtica/embriologia , Coartação Aórtica/epidemiologia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/embriologia , Doença da Válvula Aórtica Bicúspide/diagnóstico , Doença da Válvula Aórtica Bicúspide/embriologia , Doença da Válvula Aórtica Bicúspide/epidemiologia , Ecocardiografia/métodos , Feminino , Coração Fetal/diagnóstico por imagem , Valvas Cardíacas/embriologia , Humanos , Incidência , Valor Preditivo dos Testes , Gravidez , Estudos Prospectivos , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/embriologia , Valores de Referência , Medição de Risco , Ultrassonografia Pré-Natal/métodos
9.
Georgian Med News ; (299): 55-61, 2020 Feb.
Artigo em Russo | MEDLINE | ID: mdl-32242845

RESUMO

The purpose of the study was to investigate the morphogenesis of the left ventricle in the hypoplastic left heart syndrome (HLHS). There are five types of hypoplastic left ventricles were identified: with a slit-like shape and hypoplasia of LV wall, with a slit-like cavity shape and wall hypertrophy and types with endocardial fibroelastosis (with a cylindrical cavity shape, with lacunar cavities and lacunar-cylindrical cavity of the left ventricle), as a result of differences in the wall structure, cavity shape, presence or absence of endocardial fibroelastosis. The analysis of morphometric data of pathomorphological types of the left ventricle in the HLHS revealed the possible ways of their morphogenesis. Left displacement of interventricular septum in embryogenesis at 4-5 weeks of intrauterine development is associated with the occurrence of atresia of the left atrioventricular orifice and aortic valve and the appearance of a slit-like shape and hypoplasia of LV wall in the HLHS. The displacement of only the conotruncus septum leads to the appearance of a slit-like shape of cavity and hypertrophy of LV wall in the HLHS. The pathomorphological types with endocardial fibroelastosis in the HLHS depends on the stage of embryogenesis of myocardium at which fibroelastosis appears: before the myocardial compaction (up to 4th week of gestation) - the lacunar shape of LV cavity with thin compact layer of myocardium; during the compaction of myocardium (5-6th week of gestation) - the lacunar-cylindrical shape of LV cavity and after compaction (after 7-8th week of fetal development) - a cylindrical shape of LV cavity.


Assuntos
Fibroelastose Endocárdica/patologia , Valvas Cardíacas/embriologia , Ventrículos do Coração/embriologia , Síndrome do Coração Esquerdo Hipoplásico/patologia , Morfogênese , Valva Aórtica , Fibroelastose Endocárdica/complicações , Valvas Cardíacas/patologia , Ventrículos do Coração/anormalidades , Humanos
10.
J Cell Sci ; 130(7): 1321-1332, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28232522

RESUMO

Heparin-binding EGF-like growth factor (HB-EGF) plays an indispensable role in suppression of cell proliferation during mouse valvulogenesis. However, ligands of the EGF receptor (EGFR/ErbB1), including HB-EGF, are generally considered as growth-promoting factors, as shown in cancers. HB-EGF binds to and activates ErbB1 and ErbB4. We investigated the role of ErbB receptors in valvulogenesis in vivo using ErbB1- and ErbB4-deficient mice, and an ex vivo model of endocardial cushion explants. We show that HB-EGF suppresses valve mesenchymal cell proliferation through a heterodimer of ErbB1 and ErbB4, and an ErbB1 ligand (or ligands) promotes cell proliferation through a homodimer of ErbB1. Moreover, a rescue experiment with cleavable or uncleavable isoforms of ErbB4 in ERBB4-null cells indicates that the cleavable JM-A, but not the uncleavable JM-B, splice variant of ErbB4 rescues the defect of the null cells. These data suggest that the cytoplasmic intracellular domain of ErbB4, rather than the membrane-anchored tyrosine kinase, achieves this suppression. Our study demonstrates that opposing signals generated by different ErbB dimer combinations function in the same cardiac cushion mesenchymal cells for proper cardiac valve formation.


Assuntos
Receptores ErbB/metabolismo , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Mesoderma/citologia , Organogênese , Receptor ErbB-4/metabolismo , Transdução de Sinais , Alelos , Animais , Proliferação de Células , Embrião de Mamíferos/metabolismo , Genes Dominantes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Ligantes , Camundongos Knockout , Modelos Biológicos , Mutação/genética , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/química , Regulação para Cima
11.
Development ; 143(12): 2217-27, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302398

RESUMO

During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/ß-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process.


Assuntos
Valvas Cardíacas/citologia , Valvas Cardíacas/embriologia , Imageamento Tridimensional , Animais , Movimento Celular , Circulação Coronária , Endocárdio/citologia , Endocárdio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/citologia , Átrios do Coração/embriologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Mutação/genética , Contração Miocárdica , Organogênese/genética , Receptores Notch/metabolismo , Via de Sinalização Wnt , Peixe-Zebra
12.
Development ; 143(3): 473-82, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26674310

RESUMO

The elucidation of mechanisms in semilunar valve development might enable the development of new therapies for congenital heart disorders. Here, we found differences in proliferation-associated genes and genes repressed by VEGF between human semilunar valve leaflets from first and second trimester hearts. The proliferation of valve interstitial cells and ventricular valve endothelial cells (VECs) and cellular density declined from the first to the second trimester. Cytoplasmic expression of NFATC1 was detected in VECs (4 weeks) and, later, cells in the leaflet/annulus junction mesenchyme expressing inactive NFATC1 (5.5-9 weeks) were detected, indicative of endocardial-to-mesenchymal transformation (EndMT) in valvulogenesis. At this leaflet/annulus junction, CD44(+) cells clustered during elongation (11 weeks), extending toward the tip along the fibrosal layer in second trimester leaflets. Differing patterns of maturation in the fibrosa and ventricularis were detected via increased fibrosal periostin content, which tracked the presence of the CD44(+) cells in the second trimester. We revealed that spatiotemporal NFATC1 expression actively regulates EndMT during human valvulogenesis, as early as 4 weeks. Additionally, CD44(+) cells play a role in leaflet maturation toward the trilaminar structure, possibly via migration of VECs undergoing EndMT, which subsequently ascend from the leaflet/annulus junction.


Assuntos
Endocárdio/embriologia , Valvas Cardíacas/citologia , Valvas Cardíacas/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Diferenciação Celular , Proliferação de Células , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Receptores de Hialuronatos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Gravidez , Segundo Trimestre da Gravidez , Análise Espaço-Temporal , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Development ; 143(6): 1041-54, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26893350

RESUMO

Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector ß-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/ß-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/ß-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/ß-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.


Assuntos
Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Organogênese , Via de Sinalização Wnt , Animais , Proteína Axina/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Proliferação de Células/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Coxins Endocárdicos/citologia , Coxins Endocárdicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Valvas Cardíacas/efeitos dos fármacos , Camundongos Transgênicos , Valva Mitral/efeitos dos fármacos , Valva Mitral/embriologia , Valva Mitral/metabolismo , Miocárdio/metabolismo , Organogênese/efeitos dos fármacos , Organogênese/genética , Via de Sinalização Wnt/efeitos dos fármacos
14.
Dev Dyn ; 247(3): 531-541, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28884516

RESUMO

BACKGROUND: The formation of healthy heart valves throughout embryonic development is dependent on both genetic and epigenetic factors. Hemodynamic stimuli are important epigenetic regulators of valvulogenesis, but the resultant molecular pathways that control valve development are poorly understood. Here we describe how the heart and valves recover from the removal of a partial constriction (banding) of the OFT/ventricle junction (OVJ) that temporarily alters blood flow velocity through the embryonic chicken heart (HH stage 16/17). Recovery is described in terms of 24- and 48-hr gene expression, morphology, and OVJ hemodynamics. RESULTS: Collectively, these studies show that after 24 hr of recovery, important epithelial-mesenchymal transformation (EMT) genes TGFßRIII and Cadherin 11 (CDH11) transcript levels normalize return to control levels, in contrast to Periostin and TGFß,3 which remain altered. In addition, after 48 hr of recovery, TGFß3 and CDH11 transcript levels remain normalized, whereas TGFßRIII and Periostin are down-regulated. Analyses of OFT cushion volumes in the hearts show significant changes, as does the ratio of cushion to cell volume at 24 hr post band removal (PBR). Morphologically, the hearts show visible alteration following band removal when compared to their control age-matched counterparts. CONCLUSIONS: Although some aspects of the genetic/cellular profiles affected by altered hemodynamics seem to be reversed, not all gene expression and cardiac growth normalize following 48 hr of band removal. Developmental Dynamics 247:531-541, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Constrição , Valvas Cardíacas/embriologia , Coração/embriologia , Animais , Caderinas/genética , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Embrião de Galinha , Expressão Gênica , Hemodinâmica , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
15.
Development ; 142(24): 4340-50, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26525672

RESUMO

Heart valve formation initiates when endothelial cells of the heart transform into mesenchyme and populate the cardiac cushions. The transcription factor SOX9 is highly expressed in the cardiac cushion mesenchyme, and is essential for heart valve development. Loss of Sox9 in mouse cardiac cushion mesenchyme alters cell proliferation, embryonic survival, and valve formation. Despite this important role, little is known about how SOX9 regulates heart valve formation or its transcriptional targets. Therefore, we mapped putative SOX9 binding sites by ChIP-Seq in E12.5 heart valves, a stage at which the valve mesenchyme is actively proliferating and initiating differentiation. Embryonic heart valves have been shown to express a high number of genes that are associated with chondrogenesis, including several extracellular matrix proteins and transcription factors that regulate chondrogenesis. Therefore, we compared regions of putative SOX9 DNA binding between E12.5 heart valves and E12.5 limb buds. We identified context-dependent and context-independent SOX9-interacting regions throughout the genome. Analysis of context-independent SOX9 binding suggests an extensive role for SOX9 across tissues in regulating proliferation-associated genes including key components of the AP-1 complex. Integrative analysis of tissue-specific SOX9-interacting regions and gene expression profiles on Sox9-deficient heart valves demonstrated that SOX9 controls the expression of several transcription factors with previously identified roles in heart valve development, including Twist1, Sox4, Mecom and Pitx2. Together, our data identify SOX9-coordinated transcriptional hierarchies that control cell proliferation and differentiation during valve formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Proliferação de Células , Imunoprecipitação da Cromatina , DNA/metabolismo , Extremidades/embriologia , Redes Reguladoras de Genes , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição
16.
Basic Res Cardiol ; 113(1): 1, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29101484

RESUMO

Tissue development and homeostasis are dependent upon the concerted synthesis, maintenance, and degradation of extracellular matrix (ECM) molecules. Cardiac fibrosis is now recognized as a primary contributor to incidence of heart failure, particularly heart failure with preserved ejection fraction, wherein cardiac filling in diastole is compromised. Periostin is a cell-associated protein involved in cell fate determination, proliferation, tumorigenesis, and inflammatory responses. As a non-structural component of the ECM, secreted 90 kDa periostin is emerging as an important matricellular factor in cardiac mesenchymal tissue development. In addition, periostin's role as a mediator in cell-matrix crosstalk has also garnered attention for its association with fibroproliferative diseases in the myocardium, and for its association with TGF-ß/BMP signaling. This review summarizes the phylogenetic history of periostin, its role in cardiac development, and the major signaling pathways influencing its expression in cardiovascular pathology. Further, we provide a synthesis of the current literature to distinguish the multiple roles of periostin in cardiac health, development and disease. As periostin may be targeted for therapeutic treatment of cardiac fibrosis, these insights may shed light on the putative timing for application of periostin-specific therapies.


Assuntos
Doenças Cardiovasculares/metabolismo , Moléculas de Adesão Celular/metabolismo , Valvas Cardíacas/embriologia , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Matriz Extracelular/metabolismo , Coração/fisiologia , Humanos , Mesoderma/metabolismo , Família Multigênica , Domínios Proteicos , Regeneração
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 35(6): 904-907, 2018 Dec 10.
Artigo em Zh | MEDLINE | ID: mdl-30512176

RESUMO

Cardiac valves are highly organized yet delicate structures that ensure unidirectional blood flow through the cardiac chambers and large vessels. Disturbed development of cardiac valves can lead to aberrant heart formation and function which account for approximately one third of congenital heart diseases. The formation of cardiac valves is a dynamic process accomplished by a series of complex events including lineage determination and cell proliferation, differentiation and migration. This paper reviews current knowledge about the role of Tbx20 gene in the development of cardiac valves, which include functional diversities of Tbx20 at various stages of cardiac valve development, its interaction with other signaling pathways, and genetic network involved in endocardial development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Valvas Cardíacas/embriologia , Proteínas com Domínio T/genética , Diferenciação Celular , Proliferação de Células , Humanos
18.
Biochim Biophys Acta ; 1863(7 Pt B): 1760-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26608609

RESUMO

Mechanical forces are instrumental to cardiovascular development and physiology. The heart beats approximately 2.6 billion times in a human lifetime and heart valves ensure that these contractions result in an efficient, unidirectional flow of the blood. Composed of endocardial cells (EdCs) and extracellular matrix (ECM), cardiac valves are among the most mechanically challenged structures of the body both during and after their development. Understanding how hemodynamic forces modulate cardiovascular function and morphogenesis is key to unraveling the relationship between normal and pathological cardiovascular development and physiology. Most valve diseases have their origins in embryogenesis, either as signs of abnormal developmental processes or the aberrant re-expression of fetal gene programs normally quiescent in adulthood. Here we review recent discoveries in the mechanobiology of cardiac valve development and introduce the latest technologies being developed in the zebrafish, including live cell imaging and optical technologies, as well as modeling approaches that are currently transforming this field. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.


Assuntos
Doenças das Valvas Cardíacas , Valvas Cardíacas/crescimento & desenvolvimento , Hemodinâmica , Mecanotransdução Celular , Peixe-Zebra , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Doenças das Valvas Cardíacas/embriologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/fisiopatologia , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Microscopia/métodos , Modelos Animais , Morfogênese , Estresse Mecânico , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 313(6): H1143-H1154, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28842437

RESUMO

During postnatal heart valve development, glycosaminoglycan (GAG)-rich valve primordia transform into stratified valve leaflets composed of GAGs, fibrillar collagen, and elastin layers accompanied by decreased cell proliferation as well as thinning and elongation. The neonatal period is characterized by the transition from a uterine environment to atmospheric O2, but the role of changing O2 levels in valve extracellular matrix (ECM) composition or morphogenesis is not well characterized. Here, we show that tissue hypoxia decreases in mouse aortic valves in the days after birth, concomitant with ECM remodeling and cell cycle arrest of valve interstitial cells. The effects of hypoxia on late embryonic valve ECM composition, Sox9 expression, and cell proliferation were examined in chicken embryo aortic valve organ cultures. Maintenance of late embryonic chicken aortic valve organ cultures in a hypoxic environment promotes GAG expression, Sox9 nuclear localization, and indicators of hyaluronan remodeling but does not affect fibrillar collagen content or cell proliferation. Chronic hypoxia also promotes GAG accumulation in murine adult heart valves in vivo. Together, these results support a role for hypoxia in maintaining a primitive GAG-rich matrix in developing heart valves before birth and also in the induction of hyaluronan remodeling in adults.NEW & NOTEWORTHY Tissue hypoxia decreases in mouse aortic valves after birth, and exposure to hypoxia promotes glycosaminoglycan accumulation in cultured chicken embryo valves and adult murine heart valves. Thus, hypoxia maintains a primitive extracellular matrix during heart valve development and promotes extracellular matrix remodeling in adult mice, as occurs in myxomatous disease.


Assuntos
Microambiente Celular , Matriz Extracelular/metabolismo , Valvas Cardíacas/metabolismo , Ácido Hialurônico/metabolismo , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular , Proliferação de Células , Embrião de Galinha , Colágenos Fibrilares/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Valvas Cardíacas/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Organogênese , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Tempo
20.
Dev Dyn ; 245(10): 1029-42, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503167

RESUMO

BACKGROUND: There are many patients that exhibit connective tissue related cardiac malformations but do not have mutations in collagen genes. The Small Leucine Rich Proteoglycans (SLRP) fibromodulin (FMOD) and lumican (LUM) bind collagen and regulate fibril assembly in other biological contexts. RESULTS: FMOD deficient mice and double deficient FMOD; LUM mice exhibited anomalies in regions where cardiac valve tissue interdigitates with adjacent muscle for support. Ectopic connective and/or myocardial tissue(s) was associated with the more severe cardiac valve anomalies in FMOD; LUM deficient mice. At postnatal day 0 (P0) there was an increase in the mesenchymal cell number in the regions where valve cusps anchor in FMOD; LUM deficient mice compared to WT. The cardiac valve anomalies correlated with the highest levels of FMOD expression in the heart and also where myotendinous junctions (MTJ) components biglycan, collagen type I alpha 1, and collagen type VI, are also localized. CONCLUSIONS: The postnatal assembly of the collagen-rich ECM in regions where cardiac valves anchor, that we have designated 'myotendinous-like junctions' (MTLJ) requires the SLRPs FMOD and LUM. Moreover, FMOD and LUM may facilitate mesenchymal cell differentiation in late stages of cardiac valve development. Developmental Dynamics 245:1029-1042, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Fibromodulina/metabolismo , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Lumicana/metabolismo , Animais , Biglicano/genética , Biglicano/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Fibromodulina/genética , Valvas Cardíacas/anormalidades , Imuno-Histoquímica , Lumicana/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA