Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547243

RESUMO

Varroa destructor is one of the main problems in modern beekeeping. Highly selective acaricides with low toxicity to bees are used internationally to control this mite. One of the key acaricides is the organophosphorus (OP) proinsecticide coumaphos, that becomes toxic after enzymatic activation inside Varroa We show here that mites from the island Andros (AN-CR) exhibit high levels of coumaphos resistance. Resistance is not mediated by decreased coumaphos uptake, target-site resistance, or increased detoxification. Reduced proinsecticide activation by a cytochrome P450 enzyme was the main resistance mechanism, a powerful and rarely encountered evolutionary solution to insecticide selection pressure. After treatment with sublethal doses of [14C] coumaphos, susceptible mite extracts had substantial amounts of coroxon, the activated metabolite of coumaphos, while resistant mites had only trace amounts. This indicates a suppression of the P450 (CYP)-mediated activation step in the AN-CR mites. Bioassays with coroxon to bypass the activation step showed that resistance was dramatically reduced. There are 26 CYPs present in the V. destructor genome. Transcriptome analysis revealed overexpression in resistant mites of CYP4DP24 and underexpression of CYP3012A6 and CYP4EP4 RNA interference of CYP4EP4 in the susceptible population, to mimic underexpression seen in the resistant mites, prevented coumaphos activation and decreased coumaphos toxicity.


Assuntos
Abelhas/genética , Sistema Enzimático do Citocromo P-450/genética , Varroidae/efeitos dos fármacos , Animais , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Cumafos/efeitos adversos , Cumafos/farmacologia , Inativação Metabólica/efeitos dos fármacos , Inseticidas/efeitos adversos , Inseticidas/farmacologia , Taxa de Depuração Metabólica/genética , Varroidae/patogenicidade
2.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805649

RESUMO

Varroa destructor Oud (Acari: Varroidae) is a harmful ectoparasite of Apis mellifera L. honey bees causing widespread colony losses in Europe and North America. To control populations of these mites, beekeepers have an arsenal of different treatments, including both chemical and nonchemical options. However, nonchemical treatments can be labor intensive, and Varroa has gained resistance to some conventional pesticides, and the use of other chemical treatments is restricted temporally (e.g., cannot be applied during periods of honey production). Thus, beekeepers require additional treatment options for controlling mite populations. The compound 1-allyloxy-4-propoxybenzene (3c{3,6}) is a diether previously shown to be a strong feeding deterrent against Lepidopteran larvae and a repellent against mosquitoes and showed promise as a novel acaricide from laboratory and early field trials. Here we test the effect of the compound, applied at 8 g/brood box on wooden release devices, on honey bees and Varroa in field honey bee colonies located in Maryland, USA, and using a thymol-based commercial product as a positive control. 3c{3,6} had minimal effect on honey bee colonies, but more tests are needed to determine whether it affected egg production by queens. Against Varroa3c{3,6} had an estimated efficacy of 78.5%, while the positive control thymol product showed an efficacy of 91.3%. 3c{3,6} is still in the development stage, and the dose or application method needs to be revisited.


Assuntos
Acaricidas , Varroidae , Animais , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Maryland , Criação de Abelhas/métodos
3.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805652

RESUMO

The purpose of this research was to determine how common chemical treatments influence Varroa destructor (Anderson and Trueman) population resurgence rates (defined as time posttreatment for mite populations to reach 3 mites/100 adult bees) in managed honey bee (Apis mellifera L.) colonies seasonally. We conducted 2 experiments that followed the same basic protocol to address this purpose. We established 6 treatment groups in Experiment 1 in the fall of 2014: untreated control, Apivar, Apistan, CheckMite+, ApiLifeVar, and Mite Away II applied to 10 colonies per treatment. In Experiment 2, we applied 8 chemical treatments to each of 4 seasonal (spring, summer, fall, and winter) cohorts of honey bee colonies to determine how mite populations are influenced by the treatments. The treatments/formulations tested were Apivar, Apistan, Apiguard, MAQS, CheckMite+, oxalic acid (dribble), oxalic acid (shop towels), and amitraz (shop towels soaked in Bovitraz). In Experiment 1, Apivar and Mite Away II were able to delay V. destructor resurgence for 2 and 6 months, respectively. In Experiment 2, Apiguard, MAQS, oxalic acid (dribble), and Bovitraz treatments were effective at delaying V. destructor resurgence for at least 2 months during winter and spring. Only the Bovitraz and MAQS treatments were effective at controlling V. destructor in the summer and fall. Of the 2 amitraz-based treatments, the off-label Bovitraz treatment was the only treatment to reduce V. destructor populations in every season. The data gathered through this study allow for the refinement of treatment recommendations for V. destructor, especially regarding the seasonal efficacy of each miticide and the temporal efficacy posttreatment.


Assuntos
Acaricidas , Estações do Ano , Varroidae , Animais , Varroidae/efeitos dos fármacos , Abelhas/parasitologia , Criação de Abelhas
4.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805647

RESUMO

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Assuntos
Acaricidas , Timol , Toluidinas , Varroidae , Animais , Toluidinas/farmacologia , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Varroidae/fisiologia , Timol/farmacologia , Criação de Abelhas/métodos
5.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805648

RESUMO

Agrochemical exposure is a major contributor to ecological declines worldwide, including the loss of crucial pollinator species. In addition to direct toxicity, field-relevant doses of pesticides can increase species' vulnerabilities to other stressors, including parasites. Experimental field demonstrations of potential interactive effects of pesticides and additional stressors are rare, as are tests of mechanisms via which pollinators tolerate pesticides. Here, we controlled honey bee colony exposure to field-relevant concentrations of 2 neonicotinoid insecticides (clothianidin and thiamethoxam) in pollen and simultaneously manipulated intracolony genetic heterogeneity. We showed that exposure increased rates of Varroa destructor (Anderson and Trueman) parasitism and that while increased genetic heterogeneity overall improved survivability, it did not reduce the negative effect size of neonicotinoid exposure. This study is, to our knowledge, the first experimental field demonstration of how neonicotinoid exposure can increase V. destructor populations in honey bees and also demonstrates that colony genetic diversity cannot mitigate the effects of neonicotinoid pesticides.


Assuntos
Variação Genética , Inseticidas , Neonicotinoides , Varroidae , Animais , Abelhas/parasitologia , Abelhas/efeitos dos fármacos , Varroidae/efeitos dos fármacos , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Tiazóis/toxicidade , Tiametoxam , Guanidinas/toxicidade , Interações Hospedeiro-Parasita , Nitrocompostos/toxicidade
6.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055946

RESUMO

The ectoparasitic mite, Varroa destructor (Anderson and Trueman), is the leading cause of western honey bee colony, Apis mellifera (L.), mortality in the United States. Due to mounting evidence of resistance to certain approved miticides, beekeepers are struggling to keep their colonies alive. To date, there are varied but limited approved options for V. destructor control. Vaporized oxalic acid (OA) has proven to be an effective treatment against the dispersal phase of V. destructor but has its limitations since the vapor cannot penetrate the protective wax cap of honey bee pupal cells where V. destructor reproduces. In the Southeastern United States, honey bee colonies often maintain brood throughout the year, limiting the usefulness of OA. Prior studies have shown that even repeated applications of OA while brood is present are ineffective at decreasing mite populations. In the summer of 2021, we studied whether incorporating a forced brood break while vaporizing with OA would be an effective treatment against V. destructor. Ninety experimental colonies were divided into 2 blocks, one with a brood break and the other with no brood break. Within the blocks, each colony was randomly assigned 1 of 3 treatments: no OA, 2 g OA, or 3 g OA. The combination of vaporizing with OA and a forced brood break increased mite mortality by 5× and reduced mite populations significantly. These results give beekeepers in mild climates an additional integrated pest management method for controlling V. destructor during the summer season.


Assuntos
Acaricidas , Criação de Abelhas , Abelhas , Ácido Oxálico , Varroidae , Animais , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Himenópteros/efeitos dos fármacos , Himenópteros/parasitologia , Ácido Oxálico/farmacologia , Estações do Ano , Varroidae/efeitos dos fármacos , Volatilização , Acaricidas/farmacologia , Criação de Abelhas/métodos , Cruzamento/métodos
7.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137130

RESUMO

The American beekeeping industry continually experiences colony mortality with annual losses as high as 43%. A leading cause of this is the exotic, ectoparasitic mite, Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae). Integrated Pest Management (IPM) options are used to keep mite populations from reaching lethal levels, however, due to resistance and/or the lack of suitable treatment options, novel controls for reducing mites are warranted. Oxalic acid for controlling V. destructor has become a popular treatment regimen among commercial and backyard beekeepers. Applying vaporized oxalic acid inside a honey bee hive is a legal application method in the U.S., and results in the death of exposed mites. However, if mites are in the reproductive stage and therefore under the protective wax capping, oxalic acid is ineffective. One popular method of applying oxalic is vaporizing multiple times over several weeks to try and circumvent the problem of mites hiding in brood cells. By comparing against control colonies, we tested oxalic acid vaporization in colonies treated with seven applications separated by 5 d (35 d total). We tested in apiaries in Georgia and Alabama during 2019 and 2020, totaling 99 colonies. We found that adult honey bees Linnaeus (Hymenoptera: Apidae), and developing brood experienced no adverse impacts from the oxalic vaporization regime. However, we did not find evidence that frequent periodic application of oxalic during brood-rearing periods is capable of bringing V. destructor populations below treatment thresholds.


Assuntos
Abelhas/parasitologia , Ácido Oxálico/farmacologia , Controle de Pragas , Varroidae , Animais , Criação de Abelhas , Varroidae/efeitos dos fármacos , Volatilização
8.
Parasitology ; 148(6): 696-702, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33593461

RESUMO

Propolis is a hive product composed of biologically active plant resins, and has been shown to enhance individual honey bee (Apis mellifera L.) health. Propolis has also been demonstrated to mitigate, in part, the negative effects caused by the ecto-parasitic mite Varroa destructor and its associated viruses on the health of managed European honey bee colonies. However, its effect on the health status of African honey bees remains largely unknown. Here, we found that the African savannah honey bees, A. m. scutellata in Kenya, deposited approximately two and half-fold more propolis in their colonies during periods of increased than reduced worker brood rearing. This finding suggested that A. m. scutellata may use high quantities of propolis prophylactically to protect their young brood; yet, we observed no significant correlation between the quantity of propolis and the amount of worker brood or mite-infestation level on adult workers. Furthermore, whereas propolis volatiles or propolis placed in direct contact with the mites had no effect on mite survival under laboratory conditions, the ethanolic extract of propolis significantly reduced mite survival when compared with untreated control. These results suggest the presence of mite deterrent compounds in the ethanolic extract of the African honey bee propolis.


Assuntos
Anti-Infecciosos/farmacologia , Abelhas/fisiologia , Abelhas/parasitologia , Própole/farmacologia , Varroidae/efeitos dos fármacos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bioensaio , Própole/química , Própole/metabolismo
9.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536080

RESUMO

Varroa destructor is among the greatest biological threats to western honey bee (Apis mellifera L.) health worldwide. Beekeepers routinely use chemical treatments to control this parasite, though overuse and mismanagement of these treatments have led to widespread resistance in Varroa populations. Integrated Pest Management (IPM) is an ecologically based, sustainable approach to pest management that relies on a combination of control tactics that minimize environmental impacts. Herein, we provide an in-depth review of the components of IPM in a Varroa control context. These include determining economic thresholds for the mite, identification of and monitoring for Varroa, prevention strategies, and risk conscious treatments. Furthermore, we provide a detailed review of cultural, mechanical, biological, and chemical control strategies, both longstanding and emerging, used against Varroa globally. For each control type, we describe all available treatments, their efficacies against Varroa as described in the primary scientific literature, and the obstacles to their adoption. Unfortunately, reliable IPM protocols do not exist for Varroa due to the complex biology of the mite and strong reliance on chemical control by beekeepers. To encourage beekeeper adoption, a successful IPM approach to Varroa control in managed colonies must be an improvement over conventional control methods and include cost-effective treatments that can be employed readily by beekeepers. It is our intention to provide the most thorough review of Varroa control options available, ultimately framing our discussion within the context of IPM. We hope this article is a call-to-arms against the most damaging pest managed honey bee colonies face worldwide.


Assuntos
Criação de Abelhas/métodos , Abelhas/parasitologia , Controle de Pragas/métodos , Varroidae , Acaricidas/farmacologia , Animais , Interações Hospedeiro-Parasita , Infestações por Ácaros/tratamento farmacológico , Infestações por Ácaros/prevenção & controle , Infestações por Ácaros/veterinária , Varroidae/efeitos dos fármacos , Varroidae/parasitologia , Varroidae/patogenicidade
10.
Parasitol Res ; 119(11): 3595-3601, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32935162

RESUMO

Varroosis is the disease caused by the ectoparasitic mite Varroa destructor, one of the most destructive diseases of honeybees. In Spain, there is great concern because there are many therapeutic failures after acaricide treatments intended to control varroosis outbreaks. In some of these cases it is not clear whether such failures are due to the evolution of resistance. Therefore, it is of high interest the development of methodologies to test the level of resistance in mite populations. In this work, a simple bioassay methodology was used to test whether some reports on low efficacy in different regions of Spain were in fact related to reduced Varroa sensitivity to the most used acaricides. This bioassay proved to be very effective in evaluating the presence of mites that survive after being exposed to acaricides. In the samples tested, the mortality caused by coumaphos ranged from 2 to 89%; for tau-fluvalinate, it ranged from 5 to 96%. On the other hand, amitraz caused 100% mortality in all cases. These results suggest the presence of Varroa resistant to coumaphos and fluvalinate in most of the apiaries sampled, even in those where these active ingredients were not used in the last years. The bioassay technique presented here, either alone or in combination with other molecular tools, could be useful in detecting mite populations with different sensitivity to acaricides, which is of vital interest in selecting the best management and/or acaricide strategy to control the parasite in apiaries.


Assuntos
Acaricidas/farmacologia , Resistência a Inseticidas , Varroidae/efeitos dos fármacos , Animais , Abelhas/parasitologia , Bioensaio , Cumafos/farmacologia , Feminino , Infestações por Ácaros , Nitrilas/farmacologia , Piretrinas/farmacologia , Espanha , Toluidinas/farmacologia
11.
Pestic Biochem Physiol ; 160: 11-19, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519244

RESUMO

The mite Varroa destructor is an ectoparasite and has been identified as a major cause of worldwide honey bee colony losses. The use of yearly treatments for the control of varroosis is the most common answer to prevent collapses of honey bee colonies due to the mite. However, the number of effective acaricides is small and the mite tends to become resistant to these few active molecules. In this study, we have been looking for a new original varroacide treatment inhibiting selectively Varroa destructor AChE (vdAChE) with respect to Apis mellifera AChE (amAChE). To do this an original drug design methodology was used applying virtual screening of the CERMN chemolibrary, starting from a vdAChE homology sequence model. By combining the in silico screening with in vitro experiments, two promising compounds were found. In vitro tests of AChE inhibition for both species have confirmed good selectivity toward the mite vdAChE. Moreover, an in vivo protocol was performed and highlighted a varroacide activity without acute consequences on honey bee survival. The two compounds discovered have the potential to become new drug leads for the development of new treatments against the mite varroa. The method described here clearly shows the potential of a drug-design approach to develop new solutions to safeguard honey bee health.


Assuntos
Acaricidas/farmacologia , Varroidae/efeitos dos fármacos , Acaricidas/química , Animais , Simulação por Computador , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Exp Appl Acarol ; 77(2): 161-171, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30810851

RESUMO

Varroa destructor is the major cause of honey bee (Apis mellifera) colony losses. Mite control is limited to several miticides. The overuse of tau-fluvalinate has resulted in resistance via a knockdown resistance (kdr) mutation in the sodium channel gene NaVChs (L925V/I/M). In this study, we used the discriminating concentration of tau-fluvalinate (0.25 µg/mL) to detect the resistance of mites in a bioassay. Further, we verified the presence of the kdr mutation in mites from the bioassay via PCR amplification of a fragment of the voltage-gated sodium channel gene (NaVCh), restriction fragment length polymorphisms (RFLPs), and densitometry analyses in pools of surviving or dead mites. Resistance values corresponding to the densitometry of the resistant allele were related to mite survival. In the vial test, the survival of the control group was significantly higher (70.4%) than that of the tau-fluvalinate-treated group (34.3%). Mite survival in the vial test was significantly correlated with the mean proportion of resistance values. Individuals that died after tau-fluvalinate application exhibited an average resistance value of 0.0783, whereas individuals that survived exhibited an average resistance of 0.400. The concentration of tau-fluvalinate in the vials was checked using high performance liquid chromatography under different temperatures and exposure times, and indicates that the stability of tau-fluvalinate stored in the refrigerator (4 ± 1 °C) is at least 14 days. PCR-RFLP of the NaVCh gene fragment verified that the vial test is a suitable, rapid, and cost-effective method for the identification of tau-fluvalinate resistance based on kdr mutation in V. destructor in apiaries.


Assuntos
Acaricidas/farmacologia , Bioensaio/métodos , Resistência a Medicamentos/genética , Nitrilas/farmacologia , Reação em Cadeia da Polimerase/métodos , Piretrinas/farmacologia , Varroidae/efeitos dos fármacos , Animais , Densitometria/métodos , Polimorfismo de Fragmento de Restrição , Varroidae/genética
13.
Parasitol Res ; 117(11): 3527-3535, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120588

RESUMO

Self-medication plays a major role in the behavioral defense against pathogens and parasites that animals have developed during evolution. The conditions defining this adaptive behavior are: (1) contact with the substance in question must be deliberate; (2) the substance must be detrimental to one or more parasites; (3) the detrimental effect on parasites must lead to increased host fitness. Recent studies have shown that A. mellifera colonies are able to increase resin foraging rates when infested by V. destructor, whereas further investigations are needed for evidence of parasite and host fitness. In order to understand whether Varroa-infested colonies could benefit from increasing levels of resin, we carried out laboratory bioassays to investigate the effects of propolis on the fitness of infested workers. The longevity and energetic stress of adult bees kept in experimental cages and artificially infested with the mite were thus monitored over time. At the same time, in vitro experiments were performed to study the contact effects of crude propolis on Varroa mites. Our results clearly demonstrate the positive effects of raw propolis on the lifespan of Varroa-infested adult bees. A low narcoleptic effect (19-22%) of raw propolis on phoretic mites after 5 h was also observed. In terms of energetic stress, we found no differences between Varroa-free and Varroa-infested bees in terms of the daily sucrose solution demand. Our findings seem to confirm the hypothesis that resin collection and propolis use in the hive represent an example of self-medication behavior in social insects.


Assuntos
Abelhas/metabolismo , Abelhas/parasitologia , Infestações por Ácaros/tratamento farmacológico , Própole/metabolismo , Própole/farmacologia , Varroidae/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Animais , Feminino , Longevidade/efeitos dos fármacos
14.
Exp Appl Acarol ; 76(4): 421-433, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30357575

RESUMO

Varroa destructor is one of the major pests that affect honeybees around the world. Chemical treatments are common to control varroosis, but mites possess biochemical adaptive mechanisms to resist these treatments, enabling them to survive. So far, no information is available regarding whether these pesticides can induce the expression of heat shock protein (Hsp) as a common protective mechanism against tissue damage. The aims of this study were to determine differences in heat shock tolerance between mites collected from brood combs and phoretic ones, and to examine patterns of protein expression of Hsp70 that occur in various populations of V. destructor after exposure to acaricides commonly employed in beekeeping, such as flumethrin, tau-fluvalinate and coumaphos. Curiously, mites obtained from brood cells were alive at 40 °C, unlike phoretic mites that reached 100% mortality, demonstrating differential thermo-tolerance. Heat treatment induced Hsp70 in mites 4 × more than in control mites and no differences in response were observed in phoretic versus cell-brood-obtained mites. Dose-response assays were carried out at increasing acaricide concentrations. Each population showed a different stress response to acaricides despite belonging to the same geographic region. In one of them, coumaphos acted as a hormetic stressor. Pyrethroids also induced Hsp70, but mite population seemed sensitive to this treatment. We concluded that Hsp70 could represent a robust biomarker for measuring exposure of V. destructor to thermal and chemical stress, depending on the acaricide class and interpopulation variability. This is relevant because it is the first time that stress response is analyzed in this biological model, providing new insight in host-parasite-xenobiotic interaction.


Assuntos
Acaricidas/farmacologia , Proteínas de Artrópodes/genética , Proteínas de Choque Térmico HSP70/genética , Temperatura Alta/efeitos adversos , Varroidae/fisiologia , Animais , Proteínas de Artrópodes/metabolismo , Cumafos/farmacologia , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Nitrilas/farmacologia , Piretrinas/farmacologia , Estresse Fisiológico , Varroidae/efeitos dos fármacos , Varroidae/genética
15.
Vet Res ; 47(1): 51, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118545

RESUMO

Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work.


Assuntos
Acaricidas/farmacologia , Abelhas/efeitos dos fármacos , Microsporidiose/veterinária , Nosema , Animais , Abelhas/imunologia , Abelhas/microbiologia , Abelhas/parasitologia , Expressão Gênica/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Varroidae/efeitos dos fármacos
16.
Chem Biodivers ; 13(2): 210-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26880433

RESUMO

Eight propolis samples from Croatia were analyzed in detail, to study the headspace, volatiles, anti-Varroa-treatment residue, phenolics, and antioxidant properties. The samples exhibited high qualitative/quantitative variability of the chemical profiles, total phenolic content (1,589.3-14,398.3 mg GAE (gallic acid equivalent)/l EtOH extract), and antioxidant activity (11.1-133.5 mmol Fe(2+) /l extract and 6.2-65.3 mmol TEAC (Trolox® equivalent antioxidant capacity)/l extract). The main phenolics quantified by HPLC-DAD at 280 and 360 nm were vanillin, p-coumaric acid, ferulic acid, chrysin, galangin, and caffeic acid phenethyl ester. The major compounds identified by headspace solid-phase microextraction (HS-SPME), simultaneous distillation extraction (SDE), and subsequent GC-FID and GC/MS analyses were α-eudesmol (up to 19.9%), ß-eudesmol (up to 12.6%), γ-eudesmol (up to 10.5%), benzyl benzoate (up to 28.5%), and 4-vinyl-2-methoxyphenol (up to 18.1%). Vanillin was determined as minor constituent by SDE/GC-FID/MS and HPLC-DAD. The identified acaricide residue thymol was ca. three times more abundant by HS-SPME/GC-FID/MS than by SDE/GC-FID/MS and was not detected by HPLC-DAD.


Assuntos
Antioxidantes/química , Fenóis/química , Própole/química , Compostos Orgânicos Voláteis/química , Animais , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Croácia , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/farmacologia , Própole/farmacologia , Microextração em Fase Sólida , Timol/química , Timol/farmacologia , Varroidae/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia
17.
Lett Appl Microbiol ; 61(5): 411-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302038

RESUMO

UNLABELLED: Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. SIGNIFICANCE AND IMPACT OF THE STUDY: Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent.


Assuntos
Actinobacteria/metabolismo , Abelhas/parasitologia , Ácido Oxálico/metabolismo , Varroidae/efeitos dos fármacos , Varroidae/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , Dados de Sequência Molecular , Ácido Oxálico/farmacologia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
18.
Parasitol Res ; 114(11): 3999-4004, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26210302

RESUMO

The Varroa destructor mite has recently displayed an ever increasing resistance to new drugs, contributing to CCD proliferation. This work was aimed at determining new viable methods for identifying the pyrethroid resistance of V. destructor and DNA methylation in resistant and sensitive mites. DNA was extracted from Varroa mites. Nucleotide changes in the DNA of pyrethroid-resistant, pyrethroid-sensitive, and control mites were identified with polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) in the case of five mitochondrial gene fragments. More bands were observed in the drug-resistant mites than in the other two groups. Sequencing confirmed these observations. Decreased global DNA methylation levels were observed in the pyrethroid-resistant mites. There exists a previously undescribed mechanism of pyrethroid resistance development in Varroa mites. The PCR-SSCP methods can be considered and further developed as useful tools for detecting V. destructor resistance.


Assuntos
Acaricidas/farmacologia , Metilação de DNA , Resistência a Medicamentos/genética , Piretrinas/farmacologia , Varroidae/genética , Animais , Feminino , Polônia , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA/veterinária , Varroidae/efeitos dos fármacos
19.
Parasitol Res ; 114(11): 4233-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342827

RESUMO

Varroa destructor is the most serious pest of honeybee (Apis mellifera), causing high economic losses in the beekeeping industry worldwide. The intensive utilization of many chemical substances against the mites resulted in resistance development. One of the applicable and alternative treatments being used for their control is plant-derived products (PDSS). The aim of this study was to evaluate the acaricidal activity of Lepidium latifolium and Zataria multiflora leaf extracts on V. destructor in field conditions. Four different concentrations (100, 200, 400, and 500 ppm) of the methanolic extracts were sprayed to treat each colony. The efficacy and side effects on adult bees were compared to Apistan chemical strips (ACSS). The acaricidal activity was the highest (100%) for L. latifolium extract at 500 ppm after 12 days and 86.26% for Z. multiflora. The infestation rate was decreased to 0.0% with L. latifolium and to 13.74% with Z. multiflora. The highest reduction was observed with L. latifolium followed by Z. multiflora extract at 500 ppm concentration. Both of the extracts showed negligible effect on bees, and it can be concluded that these PDSS as biodegradable agents could be used for V. destructor control in honeybee colonies.


Assuntos
Acaricidas/farmacologia , Abelhas/parasitologia , Lamiaceae/química , Lepidium/química , Extratos Vegetais/farmacologia , Varroidae/efeitos dos fármacos , Acaricidas/isolamento & purificação , Animais , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química
20.
J Econ Entomol ; 108(5): 2153-67, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26453704

RESUMO

The objective of this study was to manipulate ventilation rate to characterize interactions between stocks of honey bees (Apis mellifera L.) and ventilation setting on varroa mite (Varroa destructor Anderson and Trueman) mortality in honey bee colonies kept indoors over winter. The first experiment used colonies established from stock selected locally for wintering performance under exposure to varroa (n = 6) and unselected bees (n = 6) to assess mite and bee mortality and levels of carbon dioxide (CO2) and oxygen (O2) in the bee cluster when kept under a simulated winter condition at 5°C. The second experiment, used colonies from selected bees (n = 10) and unselected bees (n = 12) that were exposed to either standard ventilation (14.4 liter/min per hive) or restricted ventilation (0.24 liter/min per hive, in a Plexiglas ventilation chamber) during a 16-d treatment period to assess the influence of restricted air flow on winter mortality rates of varroa mites and honey bees. Experiment 2 was repeated in early, mid-, and late winter. The first experiment showed that under unrestricted ventilation with CO2 concentrations averaging <2% there was no correlation between CO2 and varroa mite mortality when colonies were placed under low temperature. CO2 was negatively correlated with O2 in the bee cluster in both experiments. When ventilation was restricted, mean CO2 level (3.82 ± 0.31%, range 0.43-8.44%) increased by 200% relative to standard ventilation (1.29 ± 0.31%; range 0.09-5.26%) within the 16-d treatment period. The overall mite mortality rates and the reduction in mean abundance of varroa mite over time was greater under restricted ventilation (37 ± 4.2%) than under standard ventilation (23 ± 4.2%) but not affected by stock of bees during the treatment period. Selected bees showed overall greater mite mortality relative to unselected bees in both experiments. Restricting ventilation increased mite mortality, but did not affect worker bee mortality relative to that for colonies under standard ventilation. Restricted ventilation did not affect the overall level of Nosema compared with the control. However, there was an interaction between stock, season, and time of the trial. Unselected stock showed an increase in Nosema over time in the late winter trial that did not occur in the selected stock. In conclusion, these findings suggested that restricted ventilation has potential to suppress varroa mite in overwintering honey bee colonies via a low-cost and environmentally friendly measure.


Assuntos
Criação de Abelhas/métodos , Dióxido de Carbono/farmacologia , Fumigação , Nosema/efeitos dos fármacos , Controle de Pragas/métodos , Varroidae/efeitos dos fármacos , Animais , Abelhas/metabolismo , Dióxido de Carbono/metabolismo , Manitoba , Estações do Ano , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA