Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.032
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 147(3): 629-40, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21999944

RESUMO

The body's surfaces form the interface with the external environment, protecting the host. These epithelial barriers are also colonized by a controlled diversity of microorganisms, disturbances of which can give rise to disease. Specialized intraepithelial lymphocytes (IELs), which reside at these sites, are important as a first line of defense as well as in epithelial barrier organization and wound repair. We show here that the aryl hydrocarbon receptor (AhR) is a crucial regulator in maintaining IEL numbers in both the skin and the intestine. In the intestine, AhR deficiency or the lack of AhR ligands compromises the maintenance of IELs and the control of the microbial load and composition, resulting in heightened immune activation and increased vulnerability to epithelial damage. AhR activity can be regulated by dietary components, such as those present in cruciferous vegetables, providing a mechanistic link between dietary compounds, the intestinal immune system, and the microbiota.


Assuntos
Dieta , Epitélio/imunologia , Intestinos/imunologia , Ativação Linfocitária , Linfócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Epitélio/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Verduras
2.
Proc Natl Acad Sci U S A ; 120(14): e2205794120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972432

RESUMO

As climate changes in sub-Saharan Africa (SSA), Africa's "forgotten" food crops offer a wide range of options to diversify major staple production as a key measure toward achieving zero hunger and healthy diets. So far, however, these forgotten food crops have been neglected in SSA's climate-change adaptation strategies. Here, we quantified their capacity to adapt cropping systems of SSA's major staples of maize, rice, cassava, and yams to changing climates for the four subregions of West, Central, East, and Southern Africa. We used climate-niche modeling to explore their potential for crop diversification or the replacement of these major staples by 2070, and assessed the possible effects on micronutrient supply. Our results indicated that approximately 10% of the present production locations of these four major staples in SSA may experience novel climate conditions in 2070, ranging from a high of almost 18% in West Africa to a low of less than 1% in Southern Africa. From an initial candidate panel of 138 African forgotten food crops embracing leafy vegetables, other vegetables, fruits, cereals, pulses, seeds and nuts, and roots and tubers, we selected those that contributed most to covering projected future and contemporary climate conditions of the major staples' production locations. A prioritized shortlist of 58 forgotten food crops, able to complement each other in micronutrient provision, was determined, which covered over 95% of assessed production locations. The integration of these prioritized forgotten food crops in SSA's cropping systems will support the "double-win" of more climate-resilient and nutrient-sensitive food production in the region.


Assuntos
Produtos Agrícolas , Dieta Saudável , África Subsaariana , Verduras , Micronutrientes , Mudança Climática , Agricultura/métodos , Abastecimento de Alimentos
3.
Plant J ; 118(1): 171-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128038

RESUMO

Sugar beet and its wild relatives share a base chromosome number of nine and similar chromosome morphologies. Yet, interspecific breeding is impeded by chromosome and sequence divergence that is still not fully understood. Since repetitive DNAs are among the fastest evolving parts of the genome, we investigated, if repeatome innovations and losses are linked to chromosomal differentiation and speciation. We traced genome and chromosome-wide evolution across 13 beet species comprising all sections of the genera Beta and Patellifolia. For this, we combined short and long read sequencing, flow cytometry, and cytogenetics to build a comprehensive framework that spans the complete scale from DNA to chromosome to genome. Genome sizes and repeat profiles reflect the separation into three gene pools with contrasting evolutionary patterns. Among all repeats, satellite DNAs harbor most genomic variability, leading to fundamentally different centromere architectures, ranging from chromosomal uniformity in Beta and Patellifolia to the formation of patchwork chromosomes in Corollinae/Nanae. We show that repetitive DNAs are causal for the genome expansions and contractions across the beet genera, providing insights into the genomic underpinnings of beet speciation. Satellite DNAs in particular vary considerably between beet genomes, leading to the evolution of distinct chromosomal setups in the three gene pools, likely contributing to the barriers in beet breeding. Thus, with their isokaryotypic chromosome sets, beet genomes present an ideal system for studying the link between repeats, genomic variability, and chromosomal differentiation and provide a theoretical fundament for understanding barriers in any crop breeding effort.


Assuntos
Beta vulgaris , Beta vulgaris/genética , Sequência de Bases , DNA Satélite , Pool Gênico , Melhoramento Vegetal , Sequências Repetitivas de Ácido Nucleico/genética , Verduras/genética , DNA , Centrômero/genética , Açúcares
4.
Plant J ; 117(3): 729-746, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37932930

RESUMO

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Assuntos
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiômica , Proteômica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Proc Natl Acad Sci U S A ; 119(10): e2112063119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238660

RESUMO

SignificanceTwo billion people across the planet suffer from nutrient deficiencies. Dietary diversification is key to solving this problem, yet many food and nutrition security policies, especially in low- and middle-income countries, still focus on increasing agricultural production and access to sufficient calories as the main solution. But calories are not all equal. Here, we show how deforestation in Tanzania caused a reduction in fruit and vegetable consumption (of 14 g per person per day) and thus vitamin A adequacy of diets. Using a combination of regression and weighting analyses to generate quasi-experimental quantitative estimates of the impacts of deforestation on people's food intake, our study establishes a causal link between deforestation and people's dietary quality.


Assuntos
Ingestão de Energia , Comportamento Alimentar , Frutas , População Rural , Verduras , Feminino , Humanos , Masculino , Tanzânia
6.
Plant J ; 116(5): 1508-1528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37602679

RESUMO

Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.


Assuntos
Capsicum , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Capsicum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Verduras/genética
7.
Plant J ; 116(1): 112-127, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37344994

RESUMO

Although vacuolar phosphate transporters (VPTs) are essential for plant phosphorus adaptation, their role in Rhizobium-legume symbiosis is unclear. In this study, homologous genes of VPT1 (MtVPTs) were identified in Medicago truncatula to assess their roles in Rhizobium-legume symbiosis and phosphorus adaptation. MtVPT2 and MtVPT3 mainly positively responded to low and high phosphate, respectively. However, both mtvpt2 and mtvpt3 mutants displayed shoot phenotypes with high phosphate sensitivity and low phosphate tolerance. The root-to-shoot phosphate transfer efficiency was significantly enhanced in mtvpt3 but weakened in mtvpt2, accompanied by lower and higher root cytosolic inorganic phosphate (Pi) concentration, respectively. Low phosphate induced MtVPT2 and MtVPT3 expressions in nodules. MtVPT2 and MtVPT3 mutations markedly reduced the nodule number and nitrogenase activity under different phosphate conditions. Cytosolic Pi concentration in nodules was significantly lower in mtvpt2 and mtvpt3 than in the wildtype, especially in tissues near the base of nodules, probably due to inhibition of long-distance Pi transport and cytosolic Pi supply. Also, mtvpt2 and mtvpt3 could not maintain a stable cytosolic Pi level in the nodule fixation zone as the wildtype under low phosphate stress. These findings show that MtVPT2 and MtVPT3 modulate phosphorus adaptation and rhizobia-legume symbiosis, possibly by regulating long-distance Pi transport.


Assuntos
Medicago truncatula , Rhizobium , Fósforo/metabolismo , Simbiose/genética , Nódulos Radiculares de Plantas/metabolismo , Rhizobium/fisiologia , Fosfatos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Verduras/metabolismo , Fixação de Nitrogênio/genética
8.
Plant J ; 116(1): 38-57, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329210

RESUMO

Cassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years. To expand our knowledge and to contribute to these successes, we investigated storage roots of eight cassava genotypes with differential dry matter content from three successive field trials for their proteomic and metabolic profiles. At large, the metabolic focus in storage roots transitioned from cellular growth processes toward carbohydrate and nitrogen storage with increasing dry matter content. This is reflected in higher abundance of proteins related to nucleotide synthesis, protein turnover, and vacuolar energization in low starch genotypes, while proteins involved in sugar conversion and glycolysis were more prevalent in high dry matter genotypes. This shift in metabolic orientation was underlined by a clear transition from oxidative- to substrate-level phosphorylation in high dry matter genotypes. Our analyses highlight metabolic patterns that are consistently and quantitatively associated with high dry matter accumulation in cassava storage roots, providing fundamental understanding of cassava's metabolism as well as a data resource for targeted genetic improvement.


Assuntos
Manihot , Amido , Amido/metabolismo , Manihot/metabolismo , Proteômica , Fosforilação , Verduras/metabolismo , Genótipo , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
9.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262915

RESUMO

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Assuntos
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
10.
Am J Epidemiol ; 193(4): 660-672, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37855261

RESUMO

Inverse associations between dietary fiber (DF) and colorectal cancer risk are well-established. However, evidence is limited in relation to other cancer sites. This study, of 364,856 participants from the UK Biobank, aimed to evaluate the associations between total and source-specific partial DF and risk of 17 specific cancers and all cancers combined. Partial DF was derived from baseline touchscreen questionnaire data on cereal, bread, fruit, and vegetable intake. The outcomes were incident cancer at 17 sites and all cancers combined. Cox proportional hazards models were applied. Over a median 8.8-year follow-up period, 30,725 people were diagnosed with cancer. After adjusting for sociodemographic and lifestyle factors, those in the highest quintile of partial DF compared with the lowest quintile (<9.6 vs ≥19.1 g/day) had 10% lower risk of cancer overall, with the greatest risk reductions observed for cervical (hazard ratio (HR) = 0.33, 95% confidence interval (CI): 0.14; 0.82), esophageal (HR = 0.66, 95% CI: 0.52; 0.84), lung (HR = 0.67, 95% CI: 0.59; 0.76), bladder (HR = 0.72, 95% CI: 0.56; 0.91), and kidney (HR = 0.75, 95% CI: 0.61; 0.92) cancers. Associations between DF and lung cancer were observed only in current and former smokers. Higher DF intake, in particular cereal fiber and fruit and vegetable fiber, was associated with a lower risk of overall and multiple site-specific cancers.


Assuntos
Neoplasias , Biobanco do Reino Unido , Humanos , Estudos Prospectivos , Bancos de Espécimes Biológicos , Verduras , Neoplasias/epidemiologia , Neoplasias/etiologia , Frutas , Fatores de Risco , Fibras na Dieta , Modelos de Riscos Proporcionais , Dieta
11.
Funct Integr Genomics ; 24(2): 73, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598147

RESUMO

Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.


Assuntos
Ácido Ascórbico , Verduras , Animais , Humanos , Antioxidantes , Frutas/genética , Reguladores de Crescimento de Plantas , Produtos Agrícolas/genética , Transdução de Sinais
12.
BMC Plant Biol ; 24(1): 204, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509474

RESUMO

The Irano-Turanian region is one of the largest floristic regions in the world and harbors a high percentage of endemics, including cushion-like and dwarf-shrubby taxa. Onobrychis cornuta is an important cushion-forming element of the subalpine/alpine flora of the Irano-Turanian floristic region. To specify the genetic diversity among the populations of this species (including individuals of O. elymaitica), we employed nrDNA ITS and two noncoding regions of plastid DNA (rpl32-trnL(UAG) and trnT(UGU)-trnL(UAA)). The most striking feature of O. cornuta assemblages was the unexpectedly high nucleotide diversity in both the nDNA and cpDNA dataset. In the analyses of nuclear and plastid regions, 25 ribotypes and 42 haplotypes were found among 77 and 59 accessions, respectively, from Iran, Turkey, and Afghanistan. Network analysis of the datasets demonstrated geographic differentiation within the species. Phylogenetic analyses of all dataset retrieved O. cornuta as a non-monophyletic species due to the inclusion of O. elymaitica, comprising four distinct lineages. In addition, our analyses showed cytonuclear discordance between both nuclear and plastid topologies regarding the position of some O. cornuta individuals. The underlying causes of this inconsistency remain unclear. However, we speculate that chloroplast capture, incomplete lineage sorting, and introgression were the main reasons for this event. Furthermore, molecular dating analysis indicated that O. cornuta originated in the early Pliocene (around 4.8 Mya) and started to diversify throughout the Pliocene and in particular the Pleistocene. Moreover, O. elymaitica was reduced to a subspecific rank within the species.


Assuntos
Fabaceae , Humanos , Filogenia , Fabaceae/genética , Evolução Biológica , DNA de Cloroplastos/genética , Verduras
13.
Planta ; 259(2): 42, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270699

RESUMO

MAIN CONCLUSION: Integration of genomic approaches like whole genome sequencing, functional genomics, evolutionary genomics, and CRISPR/Cas9-based genome editing has accelerated the improvement of crop plants including leafy vegetables like celery in the face of climate change. The anthropogenic climate change is a real peril to the existence of life forms on our planet, including human and plant life. Climate change is predicted to be a significant threat to biodiversity and food security in the coming decades and is rapidly transforming global farming systems. To avoid the ghastly future in the face of climate change, the elucidation of shifts in the geographical range of plant species, species adaptation, and evolution is necessary for plant scientists to develop climate-resilient strategies. In the post-genomics era, the increasing availability of genomic resources and integration of multifaceted genomics elements is empowering biodiversity conservation action, restoration efforts, and identification of genomic regions adaptive to climate change. Genomics has accelerated the true characterization of crop wild relatives, genomic variations, and the development of climate-resilient varieties to ensure food security for 10 billion people by 2050. In this review, we have summarized the applications of multifaceted genomic tools, like conservation genomics, whole genome sequencing, functional genomics, genome editing, pangenomics, in the conservation and adaptation of plant species with a focus on celery, an aromatic and medicinal Apiaceae vegetable. We focus on how conservation scientists can utilize genomics and genomic data in conservation and improvement.


Assuntos
Apium , Verduras , Humanos , Mudança Climática , Genômica , Poder Psicológico
14.
Planta ; 259(4): 85, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448714

RESUMO

MAIN CONCLUSION: This study identified seven histone acetyltransferase-encoding genes (HATs) from Beta vulgaris L. (sugar beet) genome through bioinformatics tools and analyzed their expression profiles under salt stress. Sugar beet HATs are phylogenetically divided into four families: GNAT, MYST, CBP, and TAFII250. The BvHAT genes were differentially transcribed in leaves, stems, and roots of B. vulgaris salt-resistant (Casino) and -sensitive (Bravo) cultivars under salt stress. Histone acetylation is regulated by histone acetyltransferases (HATs), which catalyze ɛ-amino bond formation between lysine residues and acetyl groups with a cofactor, acetyl-CoA. Even though the HATs are known to participate in stress response and development in model plants, little is known about the functions of HATs in crops. In sugar beet (Beta vulgaris L.), they have not yet been identified and characterized. Here, an in silico analysis of the HAT gene family in sugar beet was performed, and their expression patterns in leaves, stems, and roots of B. vulgaris were analyzed under salt stress. Salt-resistant (Casino) and -sensitive (Bravo) beet cultivars were used for gene expression assays. Seven HATs were identified from sugar beet genome, and named BvHAG1, BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2, and BvHAF1. The HAT proteins were divided into 4 groups including MYST, GNAT (GCN5, HAT1, ELP3), CBP and TAFII250. Analysis of cis-acting elements indicated that the BvHAT genes might be involved in hormonal regulation, light response, plant development, and abiotic stress response. The BvHAT genes were differentially expressed in leaves, stems, and roots under control and 300 mM NaCl. In roots of B. vulgaris cv. Bravo, the BvHAG1, BvHAG2, BvHAG4, BvHAF1, and BvHAC1 genes were dramatically expressed after 7 and 14 days of salt stress. Interestingly, the BvHAC2 gene was not expressed under both control and stress conditions. However, the expression of BvHAG2, BvHAG3, BvHAG4, BvHAC1, BvHAC2 genes showed a significant increase in response to salt stress in the roots of cv. Casino. This study provides new insights into the potential roles of histone acetyltransferases in sugar beet.


Assuntos
Beta vulgaris , Nitrilas , Beta vulgaris/genética , Filogenia , Estresse Salino/genética , Verduras , Histona Acetiltransferases/genética , Açúcares
15.
Cancer Causes Control ; 35(2): 293-309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37733136

RESUMO

PURPOSE: Acting on modifiable risk factors can prevent approximately 40% of cancers. Knowing the factors that lead people to adopt healthy behaviors is crucial for designing effective primary prevention campaigns. Our study attempts to provide knowledge in this direction. METHODS: This cross-sectional study was conducted via the Seintinelles collaborative research platform in a community of women without a personal cancer history, and volunteering to take online questionnaires. We collected data on sociodemographic and health factors, knowledge of cancer risk factors, behaviors, and possible behavior changes (tobacco/alcohol use, diet, body weight, and physical activity) in the last 10 years. RESULTS: The study involved 1465 women aged between 18 and 84 years. Factors such as young age, living alone, and obesity were associated with some positive or negative behavior changes. Being professionally active and having comorbidities favored certain positive behavior changes, while having dependent children, living in a rural area, and being hospitalized were associated with negative or no change in behaviors. Lack of knowledge about modifiable risk factors for cancer was associated with the non-adoption of various healthy behaviors (consumptions of fruit and vegetables, processed and red meat; physical activity). Only 5.5% of participants currently reported to be compliant with seven public health recommendations (smoking; alcohol, fruit/vegetables, and red/processed meat intakes; body mass index; and physical activity). CONCLUSIONS: This study allowed to identify the need to increase the level of knowledge on modifiable risk factors for cancer among the general population and to better clarify the content of prevention messages.


Assuntos
Neoplasias , Saúde Pública , Criança , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Dieta , Comportamentos Relacionados com a Saúde , Verduras , Neoplasias/epidemiologia , Neoplasias/prevenção & controle
16.
Appl Environ Microbiol ; 90(4): e0001724, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534143

RESUMO

The emergence of azole-resistant Aspergillus fumigatus (ARAf) across the world is an important public health concern. We sought to determine if propiconazole, a demethylase inhibitor (DMI) fungicide, exerted a selective pressure for ARAf in a tomato production environment following multiple exposures to the fungicide. A tomato field trial was established in 2019 and propiconazole was applied weekly until harvest. Soil, leaf, and fruit (when present) samples were collected at baseline and after each propiconazole application. A. fumigatus isolates (n, 178) were recovered and 173 were tested for susceptibility to itraconazole, posaconazole, voriconazole, and propiconazole in accordance with CLSI M38 guidelines. All the isolates were susceptible to medical triazoles and the propiconazole MIC ranged from 0.25 to 8 mg/L. A linear regression model was fitted that showed no longitudinal increment in the log2-fold azole MIC of the isolates collected after each propiconazole exposure compared to the baseline isolates. AsperGenius real-time multiplex assay ruled out TR34/L98H and TR46/Y121F/T289A cyp51A resistance markers in these isolates. Sequencing of a subset of isolates (n, 46) demonstrated widespread presence of F46Y/M172V/E427K and F46Y/M172V/N248T/D255E/E427K cyp51A mutations previously associated with reduced susceptibility to triazoles. IMPORTANCE: The agricultural use of azole fungicides to control plant diseases has been implicated as a major contributor to ARAf infections in humans. Our study did not reveal imposition of selection pressure for ARAf in a vegetable production system. However, more surveillance studies for ARAf in food crop production and other environments are warranted in understanding this public and One Health issue.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Humanos , Aspergillus fumigatus/genética , Azóis/farmacologia , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Farmacorresistência Fúngica/genética , Triazóis/farmacologia , Fungicidas Industriais/farmacologia , Verduras , Testes de Sensibilidade Microbiana
17.
Electrophoresis ; 45(3-4): 266-274, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817363

RESUMO

The bamboo shoot of Pleioblastus amarus (Keng) Keng f. is a medicinal and edible resource in China. In this study, three separation techniques were applied to identify the primary and secondary metabolites component of P. amarus bamboo shoots, including sheathless capillary electrophoresis electrospray ionization-mass spectrometry (CESI-MS), reverse-phase liquid chromatography-MS (RPLC-MS), and hydrophilic interaction liquid chromatography-MS (HILIC-MS). A total of 201 metabolites were identified by the three methods. Among those metabolites, 146 were identified by RPLC-MS, 85 were identified by HILIC-MS, and 46 were identified by sheathless CESI-MS. These methods were complementary and had a linear coefficient. CESI-MS presented advantages in the identification of isomers, high sensitivity, very low sample usage, and good detection of polar and nonpolar metabolites, showing its unique applications in food analysis and prospects in metabolic research.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas por Ionização por Electrospray , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Eletroforese Capilar/métodos , Verduras , Interações Hidrofóbicas e Hidrofílicas
18.
J Neurol Neurosurg Psychiatry ; 95(7): 639-645, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38267207

RESUMO

BACKGROUND: Flavonoids have been proposed to reduce the risk of Parkinson's disease (PD). However, results from epidemiological studies have been inconclusive. OBJECTIVE: To prospectively examine the association between the intake of flavonoids and their subclasses and the risk of PD and how pesticides may confound or modify that association. METHODS: The study population comprised 80 701 women (1984-2016) and 48 782 men (1986-2016) from two large US cohorts. Flavonoid intake was ascertained at baseline and every 4 years thereafter using a semiquantitative Food Frequency Questionnaire. We conducted multivariable-adjusted Cox regression models to estimate HRs and 95% CIs of PD according to quintiles of baseline and cumulative average intakes of flavonoids and subclasses. We repeated the analyses, adjusting for intakes of high-pesticide-residue fruits and vegetables (FVs) and stratifying by servings/day of high-pesticide-residue FV intake. RESULTS: We identified 676 incident PD cases in women and 714 in men after 30-32 years of follow-up. Higher total flavonoid intake at baseline was not associated with a lower PD risk, neither in men (HR comparing highest to lowest quintile: 0.89, 95% CI: 0.69 to 1.14) nor in women (HR comparing highest to lowest quintile: 1.27, 95% CI: 0.98 to 1.64). Similar results were observed for cumulative average intakes and flavonoid subclasses. Results remained similar after adjustment for and stratification by high-pesticide-residue FV and when analyses were restricted to younger PD cases. CONCLUSION: These results do not support a protective effect of flavonoid intake on PD risk. Pesticide residues do not confound or modify the association.


Assuntos
Flavonoides , Doença de Parkinson , Humanos , Doença de Parkinson/epidemiologia , Doença de Parkinson/prevenção & controle , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Fatores de Risco , Verduras , Frutas , Adulto , Dieta , Resíduos de Praguicidas , Modelos de Riscos Proporcionais , Estados Unidos/epidemiologia
19.
Curr Opin Clin Nutr Metab Care ; 27(3): 244-251, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386477

RESUMO

PURPOSE OF REVIEW: Sarcopenia increases in prevalence at older ages and may be exacerbated by poor diet. Whole foods rich in specific nutrients may be myoprotective and mitigate the risk of sarcopenia. Here we review recent evidence published from observational and intervention studies regarding myoprotective foods and explore their benefit for the prevention and/or treatment of sarcopenia in older adults. RECENT FINDINGS: We found limited new evidence for the role of whole foods in sarcopenia and sarcopenia components (muscle mass, strength, physical performance). There was some evidence for higher consumption of protein-rich foods (milk and dairy) being beneficial for muscle strength in observational and intervention studies. Higher consumption of antioxidant-rich foods (fruit and vegetables) was associated with better physical performance and lower odds of sarcopenia in observational studies. Evidence for other protein- and antioxidant-rich foods were inconsistent or lacking. There remains a clear need for intervention studies designed to identify the role of whole foods for the treatment of sarcopenia. SUMMARY: Although evidence for myoprotective roles of dairy, fruit and vegetables is emerging from observational studies, higher level evidence from intervention studies is needed for these foods to be recommended in diets of older adults to prevent and/or treat sarcopenia.


Assuntos
Sarcopenia , Humanos , Idoso , Sarcopenia/prevenção & controle , Envelhecimento/fisiologia , Antioxidantes/uso terapêutico , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Verduras
20.
Crit Rev Biotechnol ; 44(2): 236-254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642423

RESUMO

Nowadays, rapidly increasing production, use and disposable of plastic products has become one of the utmost environmental issues. Our current circumstances in which the food supply chain is demonstrated as containing plastic particles and other plastic-based impurities, represents a significant health risk to humans, animals, and environmental alike. According to this point of view, biodegradable plastic material aims to produce a more sustainable and greener world with a lower ecological impact. Bioplastics are being investigated as an environmentally friendly candidate to address this problem and hence global bioplastic production has seen significant growth and expansion in recent years. This article focuses on a few critical issues that must be addressed for bioplastic production to become commercially viable. Although the reduction of fruit and vegetable waste biomass has an apparent value in terms of environmental benefits and sustainability, commercial success at industrial scale has remained flat. This is due to various factors, including biomass feedstocks, pretreatment technologies, enzymatic hydrolysis, and scale-up issues in the industry, all of which contribute to high capital and operating costs. This review paper summarizes the global overview of bioplastics derived from fruit and vegetable waste biomass. Furthermore, economic and technical challenges associated with industrialization and diverse applications of bioplastics in biomedical, agricultural, and food-packaging fields due to their excellent biocompatibility properties are reviewed.HighlightsReview of the diverse types and characteristics of sustainability of biobased plasticsImproved pretreatment technologies can develop to enhance greater yieldEnzyme hydrolysis process used for bioplastic extraction & hasten industrial scale-upFocus on technical challenges facing commercialized the bioplasticsDetailed discussion on the application for sustainability of biodegradable plastics.


Assuntos
Frutas , Verduras , Animais , Humanos , Plásticos , Biopolímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA