Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.372
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 162(3): 648-61, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232230

RESUMO

We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microtomia/métodos , Neocórtex/ultraestrutura , Neurônios/ultraestrutura , Animais , Automação , Axônios/ultraestrutura , Dendritos/ultraestrutura , Camundongos , Neocórtex/citologia , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura
2.
Nature ; 631(8022): 899-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838737

RESUMO

Synaptic vesicles are organelles with a precisely defined protein and lipid composition1,2, yet the molecular mechanisms for the biogenesis of synaptic vesicles are mainly unknown. Here we discovered a well-defined interface between the synaptic vesicle V-ATPase and synaptophysin by in situ cryo-electron tomography and single-particle cryo-electron microscopy of functional synaptic vesicles isolated from mouse brains3. The synaptic vesicle V-ATPase is an ATP-dependent proton pump that establishes the proton gradient across the synaptic vesicle, which in turn drives the uptake of neurotransmitters4,5. Synaptophysin6 and its paralogues synaptoporin7 and synaptogyrin8 belong to a family of abundant synaptic vesicle proteins whose function is still unclear. We performed structural and functional studies of synaptophysin-knockout mice, confirming the identity of synaptophysin as an interaction partner with the V-ATPase. Although there is little change in the conformation of the V-ATPase upon interaction with synaptophysin, the presence of synaptophysin in synaptic vesicles profoundly affects the copy number of V-ATPases. This effect on the topography of synaptic vesicles suggests that synaptophysin assists in their biogenesis. In support of this model, we observed that synaptophysin-knockout mice exhibit severe seizure susceptibility, suggesting an imbalance of neurotransmitter release as a physiological consequence of the absence of synaptophysin.


Assuntos
Sinaptofisina , ATPases Vacuolares Próton-Translocadoras , Animais , Masculino , Camundongos , Microscopia Crioeletrônica , Camundongos Knockout , Modelos Moleculares , Neurotransmissores/metabolismo , Ligação Proteica , Convulsões/genética , Convulsões/metabolismo , Vesículas Sinápticas/química , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/química , Sinaptofisina/deficiência , Sinaptofisina/metabolismo , Sinaptofisina/ultraestrutura , ATPases Vacuolares Próton-Translocadoras/análise , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/ultraestrutura , Tomografia com Microscopia Eletrônica
3.
Nature ; 599(7883): 147-151, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34616045

RESUMO

Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels1. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle2) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.


Assuntos
Conjuntos de Dados como Assunto , Disseminação de Informação , Microscopia Eletrônica de Varredura , Organelas/ultraestrutura , Animais , Linhagem Celular , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Feminino , Complexo de Golgi/ultraestrutura , Humanos , Interfase , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Varredura/normas , Microtúbulos/ultraestrutura , Neuroglia/ultraestrutura , Neurônios/ultraestrutura , Publicação de Acesso Aberto , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/ultraestrutura , Ribossomos/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 121(27): e2403136121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38923992

RESUMO

The spatial distribution of proteins and their arrangement within the cellular ultrastructure regulates the opening of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in response to glutamate release at the synapse. Fluorescence microscopy imaging revealed that the postsynaptic density (PSD) and scaffolding proteins in the presynaptic active zone (AZ) align across the synapse to form a trans-synaptic "nanocolumn," but the relation to synaptic vesicle release sites is uncertain. Here, we employ focused-ion beam (FIB) milling and cryoelectron tomography to image synapses under near-native conditions. Improved image contrast, enabled by FIB milling, allows simultaneous visualization of supramolecular nanoclusters within the AZ and PSD and synaptic vesicles. Surprisingly, membrane-proximal synaptic vesicles, which fuse to release glutamate, are not preferentially aligned with AZ or PSD nanoclusters. These synaptic vesicles are linked to the membrane by peripheral protein densities, often consistent in size and shape with Munc13, as well as globular densities bridging the synaptic vesicle and plasma membrane, consistent with prefusion complexes of SNAREs, synaptotagmins, and complexin. Monte Carlo simulations of synaptic transmission events using biorealistic models guided by our tomograms predict that clustering AMPARs within PSD nanoclusters increases the variability of the postsynaptic response but not its average amplitude. Together, our data support a model in which synaptic strength is tuned at the level of single vesicles by the spatial relationship between scaffolding nanoclusters and single synaptic vesicle fusion sites.


Assuntos
Tomografia com Microscopia Eletrônica , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Animais , Ratos , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/ultraestrutura , Microscopia Crioeletrônica/métodos , Sinapses/metabolismo , Sinapses/ultraestrutura
5.
Annu Rev Genet ; 51: 455-476, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28934592

RESUMO

The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Assuntos
Evolução Biológica , Comunicação Celular/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cnidários/anatomia & histologia , Cnidários/fisiologia , Endossomos/fisiologia , Endossomos/ultraestrutura , Lisossomos/fisiologia , Lisossomos/ultraestrutura , Sistema Nervoso/citologia , Neurônios/citologia , Placozoa/anatomia & histologia , Placozoa/fisiologia , Poríferos/anatomia & histologia , Poríferos/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Vertebrados/anatomia & histologia , Vertebrados/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
J Physiol ; 602(12): 2873-2898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723211

RESUMO

Neurons in the central nervous system communicate with each other by activating billions of tiny synaptic boutons distributed along their fine axons. These presynaptic varicosities are very crowded environments, comprising hundreds of synaptic vesicles. Only a fraction of these vesicles can be recruited in a single release episode, either spontaneous or evoked by action potentials. Since the seminal work by Fatt and Katz, spontaneous release has been modelled as a memoryless process. Nevertheless, at central synapses, experimental evidence indicates more complex features, including non-exponential distributions of release intervals and power-law behaviour in their rate. To describe these features, we developed a probabilistic model of spontaneous release based on Brownian motion of synaptic vesicles in the presynaptic environment. To account for different diffusion regimes, we based our simulations on fractional Brownian motion. We show that this model can predict both deviation from the Poisson hypothesis and power-law features in experimental quantal release series, thus suggesting that the vesicular motion by diffusion could per se explain the emergence of these properties. We demonstrate the efficacy of our modelling approach using electrophysiological recordings at single synaptic boutons and ultrastructural data. When this approach was used to simulate evoked responses, we found that the replenishment of the readily releasable pool driven by Brownian motion of vesicles can reproduce the characteristic binomial release distributions seen experimentally. We believe that our modelling approach supports the idea that vesicle diffusion and readily releasable pool dynamics are crucial factors for the physiological functioning of neuronal communication. KEY POINTS: We developed a new probabilistic model of spontaneous and evoked vesicle fusion based on simple biophysical assumptions, including the motion of vesicles before they dock to the release site. We provide closed-form equations for the interval distribution of spontaneous releases in the special case of Brownian diffusion of vesicles, showing that a power-law heavy tail is generated. Fractional Brownian motion (fBm) was exploited to simulate anomalous vesicle diffusion, including directed and non-directed motion, by varying the Hurst exponent. We show that our model predicts non-linear features observed in experimental spontaneous quantal release series as well as ultrastructural data of synaptic vesicles spatial distribution. Evoked exocytosis based on a diffusion-replenished readily releasable pool might explain the emergence of power-law behaviour in neuronal activity.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Animais , Transmissão Sináptica/fisiologia , Modelos Neurológicos , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Difusão
7.
J Biol Chem ; 299(11): 105282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742923

RESUMO

The intracellular domains of connexins are essential for the assembly of gap junctions. For connexin 36 (Cx36), the major neuronal connexin, it has been shown that a dysfunctional PDZ-binding motif interferes with electrical synapse formation. However, it is still unknown how this motif coordinates the transport of Cx36. In the present study, we characterize a phenotype of Cx36 mutants that lack a functional PDZ-binding motif using HEK293T cells as an expression system. We provide evidence that an intact PDZ-binding motif is critical for proper endoplasmic reticulum (ER) export of Cx36. Removing the PDZ-binding motif of Cx36 results in ER retention and the formation of multimembrane vesicles containing gap junction-like connexin aggregates. Using a combination of site-directed mutagenesis and electron micrographs, we reveal that these vesicles consist of Cx36 channels that docked prematurely in the ER. Our data suggest a model in which ER-retained Cx36 channels reshape the ER membrane into concentric whorls that are released into the cytoplasm.


Assuntos
Conexinas , Retículo Endoplasmático , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Células HEK293 , Domínios Proteicos , Motivos de Aminoácidos , Sinapses Elétricas/fisiologia , Mutação , Transporte Proteico/genética , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura , Microscopia Eletrônica de Varredura , Proteína delta-2 de Junções Comunicantes
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33468631

RESUMO

Controlled release of neurotransmitters stored in synaptic vesicles (SVs) is a fundamental process that is central to all information processing in the brain. This relies on tight coupling of the SV fusion to action potential-evoked presynaptic Ca2+ influx. This Ca2+-evoked release occurs from a readily releasable pool (RRP) of SVs docked to the plasma membrane (PM). The protein components involved in initial SV docking/tethering and the subsequent priming reactions which make the SV release ready are known. Yet, the supramolecular architecture and sequence of molecular events underlying SV release are unclear. Here, we use cryoelectron tomography analysis in cultured hippocampal neurons to delineate the arrangement of the exocytosis machinery under docked SVs. Under native conditions, we find that vesicles are initially "tethered" to the PM by a variable number of protein densities (∼10 to 20 nm long) with no discernible organization. In contrast, we observe exactly six protein masses, each likely consisting of a single SNAREpin with its bound Synaptotagmins and Complexin, arranged symmetrically connecting the "primed" vesicles to the PM. Our data indicate that the fusion machinery is likely organized into a highly cooperative framework during the priming process which enables rapid SV fusion and neurotransmitter release following Ca2+ influx.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Células Cultivadas , Microscopia Crioeletrônica , Hipocampo/citologia , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875591

RESUMO

Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Vesículas Sinápticas/ultraestrutura , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Citoesqueleto , Tomografia com Microscopia Eletrônica/métodos , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Masculino , Neurotransmissores , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Long-Evans , Sinapses/fisiologia , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/fisiologia
10.
Hum Mol Genet ; 30(13): 1175-1187, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33601422

RESUMO

Synaptic dysfunction and cognitive decline in Huntington's disease (HD) involve hyperactive A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). To identify the molecular mechanisms through which ADAM10 is associated with synaptic dysfunction in HD, we performed an immunoaffinity purification-mass spectrometry (IP-MS) study of endogenous ADAM10 in the brains of wild-type and HD mice. We found that proteins implicated in synapse organization, synaptic plasticity, and vesicle and organelles trafficking interact with ADAM10, suggesting that it may act as hub protein at the excitatory synapse. Importantly, the ADAM10 interactome is enriched in presynaptic proteins and ADAM10 co-immunoprecipitates with piccolo (PCLO), a key player in the recycling and maintenance of synaptic vesicles. In contrast, reduced ADAM10/PCLO immunoprecipitation occurs in the HD brain, with decreased density of synaptic vesicles in the reserve and docked pools at the HD presynaptic terminal. Conditional heterozygous deletion of ADAM10 in the forebrain of HD mice reduces active ADAM10 to wild-type level and normalizes ADAM10/PCLO complex formation and synaptic vesicle density and distribution. The results indicate that presynaptic ADAM10 and PCLO are a relevant component of HD pathogenesis.


Assuntos
Proteína ADAM10/metabolismo , Proteínas do Citoesqueleto/metabolismo , Doença de Huntington/metabolismo , Neuropeptídeos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína ADAM10/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Doença de Huntington/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/genética , Proteômica/métodos , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem/métodos
11.
Cereb Cortex ; 32(9): 1840-1865, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34530440

RESUMO

Synapses "govern" the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography. Beside the overall geometry of SBs, the size of active zones (AZs) and that of the three pools of synaptic vesicles (SVs) were quantified. SBs in L6 of the TLN were middle-sized (~5 µm2), the majority contained only a single but comparatively large AZ (~0.20 µm2). SBs had a total pool of ~1100 SVs with comparatively large readily releasable (RRP, ~10 SVs L6a), (RRP, ~15 SVs L6b), recycling (RP, ~150 SVs), and resting (~900 SVs) pools. All pools showed a remarkably large variability suggesting a strong modulation of short-term synaptic plasticity. In conclusion, L6 SBs are highly reliable in synaptic transmission within the L6 network in the TLN and may act as "amplifiers," "integrators" but also as "discriminators" for columnar specific, long-range extracortical and cortico-thalamic signals from the sensory periphery.


Assuntos
Neocórtex , Terminações Pré-Sinápticas , Adulto , Humanos , Neocórtex/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura , Lobo Temporal/ultraestrutura
12.
Proc Natl Acad Sci U S A ; 117(52): 33586-33596, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376223

RESUMO

Current proteomic studies clarified canonical synaptic proteins that are common to many types of synapses. However, proteins of diversified functions in a subset of synapses are largely hidden because of their low abundance or structural similarities to abundant proteins. To overcome this limitation, we have developed an "ultra-definition" (UD) subcellular proteomic workflow. Using purified synaptic vesicle (SV) fraction from rat brain, we identified 1,466 proteins, three times more than reported previously. This refined proteome includes all canonical SV proteins, as well as numerous proteins of low abundance, many of which were hitherto undetected. Comparison of UD quantifications between SV and synaptosomal fractions has enabled us to distinguish SV-resident proteins from potential SV-visitor proteins. We found 134 SV residents, of which 86 are present in an average copy number per SV of less than one, including vesicular transporters of nonubiquitous neurotransmitters in the brain. We provide a fully annotated resource of all categorized SV-resident and potential SV-visitor proteins, which can be utilized to drive novel functional studies, as we characterized here Aak1 as a regulator of synaptic transmission. Moreover, proteins in the SV fraction are associated with more than 200 distinct brain diseases. Remarkably, a majority of these proteins was found in the low-abundance proteome range, highlighting its pathological significance. Our deep SV proteome will provide a fundamental resource for a variety of future investigations on the function of synapses in health and disease.


Assuntos
Encéfalo/metabolismo , Mamíferos/metabolismo , Proteoma/metabolismo , Vesículas Sinápticas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Proteoma/química , Proteômica , Ratos Sprague-Dawley , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo
13.
J Neurosci ; 41(6): 1174-1190, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303681

RESUMO

The BAD-BAX-caspase-3 cascade is a canonical apoptosis pathway. Macroautophagy ("autophagy" hereinafter) is a process by which organelles and aggregated proteins are delivered to lysosomes for degradation. Here, we report a new function of the BAD-BAX-caspase-3 cascade and autophagy in the control of synaptic vesicle pools. We found that, in hippocampal neurons of male mice, the BAD-BAX-caspase-3 pathway regulates autophagy, which in turn limits the size of synaptic vesicle pools and influences the kinetics of activity-induced depletion and recovery of synaptic vesicle pools. Moreover, the caspase-autophagy pathway is engaged by fear conditioning to facilitate associative fear learning and memory. This work identifies a new mechanism for controlling synaptic vesicle pools, and a novel, nonapoptotic, presynaptic function of the BAD-BAX-caspase-3 cascade.SIGNIFICANCE STATEMENT Despite the importance of synaptic vesicles for neurons, little is known about how the size of synaptic vesicle pools is maintained under basal conditions and regulated by neural activity. This study identifies a new mechanism for the control of synaptic vesicle pools, and a new, nonapoptotic function of the BAD-BAX-caspase-3 pathway in presynaptic terminals. Additionally, it indicates that autophagy is not only a homeostatic mechanism to maintain the integrity of cells and tissues, but also a process engaged by neural activity to regulate synaptic vesicle pools for optimal synaptic responses, learning, and memory.


Assuntos
Autofagia/fisiologia , Caspase 3/deficiência , Transdução de Sinais/fisiologia , Vesículas Sinápticas/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína de Morte Celular Associada a bcl/deficiência , Animais , Caspase 3/genética , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Imagem Molecular/métodos , Técnicas de Cultura de Órgãos , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura , Proteína X Associada a bcl-2/genética , Proteína de Morte Celular Associada a bcl/genética
14.
J Neurosci ; 40(49): 9372-9385, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139401

RESUMO

Efficient neurotransmitter release at the presynaptic terminal requires docking of synaptic vesicles to the active zone membrane and formation of fusion-competent synaptic vesicles near voltage-gated Ca2+ channels. Rab3-interacting molecule (RIM) is a critical active zone organizer, as it recruits Ca2+ channels and activates synaptic vesicle docking and priming via Munc13-1. However, our knowledge about Munc13-independent contributions of RIM to active zone functions is limited. To identify the functions that are solely mediated by RIM, we used genetic manipulations to control RIM and Munc13-1 activity in cultured hippocampal neurons from mice of either sex and compared synaptic ultrastructure and neurotransmission. We found that RIM modulates synaptic vesicle localization in the proximity of the active zone membrane independent of Munc13-1. In another step, both RIM and Munc13 mediate synaptic vesicle docking and priming. In addition, while the activity of both RIM and Munc13-1 is required for Ca2+-evoked release, RIM uniquely controls neurotransmitter release efficiency. However, activity-dependent augmentation of synaptic vesicle pool size relies exclusively on the action of Munc13s. Based on our results, we extend previous findings and propose a refined model in which RIM and Munc13-1 act in overlapping and independent stages of synaptic vesicle localization and release.SIGNIFICANCE STATEMENT The presynaptic active zone is composed of scaffolding proteins that functionally interact to localize synaptic vesicles to release sites, ensuring neurotransmission. Our current knowledge of the presynaptic active zone function relies on structure-function analysis, which has provided detailed information on the network of interactions and the impact of active zone proteins. Yet, the hierarchical, redundant, or independent cooperation of each active zone protein to synapse functions is not fully understood. Rab3-interacting molecule and Munc13 are the two key functionally interacting active zone proteins. Here, we dissected the distinct actions of Rab3-interacting molecule and Munc13-1 from both ultrastructural and physiological aspects. Our findings provide a more detailed view of how these two presynaptic proteins orchestrate their functions to achieve synaptic transmission.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurotransmissores/metabolismo , Vesículas Sinápticas/ultraestrutura
15.
J Neurosci ; 40(45): 8604-8617, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046543

RESUMO

The second messenger cAMP is an important determinant of synaptic plasticity that is associated with enhanced neurotransmitter release. Long-term potentiation (LTP) at parallel fiber (PF)-Purkinje cell (PC) synapses depends on a Ca2+-induced increase in presynaptic cAMP that is mediated by Ca2+-sensitive adenylyl cyclases. However, the upstream signaling and the downstream targets of cAMP involved in these events remain poorly understood. It is unclear whether cAMP generated by ß-adrenergic receptors (ßARs) is required for PF-PC LTP, although noradrenergic varicosities are apposed in PF-PC contacts. Guanine nucleotide exchange proteins directly activated by cAMP [Epac proteins (Epac 1-2)] are alternative cAMP targets to protein kinase A (PKA) and Epac2 is abundant in the cerebellum. However, whether Epac proteins participate in PF-PC LTP is not known. Immunoelectron microscopy demonstrated that ßARs are expressed in PF boutons. Moreover, activation of these receptors through their agonist isoproterenol potentiated synaptic transmission in cerebellar slices from mice of either sex, an effect that was insensitive to the PKA inhibitors (H-89, KT270) but that was blocked by the Epac inhibitor ESI 05. Interestingly, prior activation of these ßARs occluded PF-PC LTP, while the ß1AR antagonist metoprolol blocked PF-PC LTP, which was also absent in Epac2-/- mice. PF-PC LTP is associated with an increase in the size of the readily releasable pool (RRP) of synaptic vesicles, consistent with the isoproterenol-induced increase in vesicle docking in cerebellar slices. Thus, the ßAR-mediated modulation of the release machinery and the subsequent increase in the size of the RRP contributes to PF-PC LTP.SIGNIFICANCE STATEMENT G-protein-coupled receptors modulate the release machinery, causing long-lasting changes in synaptic transmission that influence synaptic plasticity. Nevertheless, the mechanisms underlying synaptic responses to ß-adrenergic receptor (ßAR) activation remain poorly understood. An increase in the number of synaptic vesicles primed for exocytosis accounts for the potentiation of neurotransmitter release driven by ßARs. This effect is not mediated by the canonical protein kinase A pathway but rather, through direct activation of the guanine nucleotide exchange protein Epac by cAMP. Interestingly, this ßAR signaling via Epac is involved in long term potentiation at cerebellar granule cell-to-Purkinje cell synapses. Thus, the pharmacological activation of ßARs modulates synaptic plasticity and opens therapeutic opportunities to control this phenomenon.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Vesículas Sinápticas/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cerebelo/citologia , Cerebelo/metabolismo , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Inibidores de Proteínas Quinases/farmacologia , Células de Purkinje/fisiologia , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Vesículas Sinápticas/ultraestrutura
16.
J Neurosci ; 40(12): 2471-2484, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32051325

RESUMO

The AMPA receptor (AMPAR) subunit GluA3 has been suggested to shape synaptic transmission and activity-dependent plasticity in endbulb-bushy cell synapses (endbulb synapses) in the anteroventral cochlear nucleus, yet the specific roles of GluA3 in the synaptic transmission at endbulb synapses remains unexplored. Here, we compared WT and GluA3 KO mice of both sexes and identified several important roles of GluA3 in the maturation of synaptic transmission and short-term plasticity in endbulb synapses. We show that GluA3 largely determines the ultrafast kinetics of endbulb synapses glutamatergic currents by promoting the insertion of postsynaptic AMPARs that contain fast desensitizing flop subunits. In addition, GluA3 is also required for the normal function, structure, and development of the presynaptic terminal which leads to altered short term-depression in GluA3 KO mice. The presence of GluA3 reduces and slows synaptic depression, which is achieved by lowering the probability of vesicle release, promoting efficient vesicle replenishment, and increasing the readily releasable pool of synaptic vesicles. Surprisingly, GluA3 also makes the speed of synaptic depression rate-invariant. We propose that the slower and rate-invariant speed of depression allows an initial response window that still contains presynaptic firing rate information before the synapse is depressed. Because this response window is rate-invariant, GluA3 extends the range of presynaptic firing rates over which rate information in bushy cells can be preserved. This novel role of GluA3 may be important to allowing the postsynaptic targets of spherical bushy cells in mice use rate information for encoding sound intensity and sound localization.SIGNIFICANCE STATEMENT We report novel roles of the glutamate receptor subunit GluA3 in synaptic transmission in synapses between auditory nerve fibers and spherical bushy cells (BCs) in the cochlear nucleus. We show that GluA3 contributes to the generation of ultrafast glutamatergic currents at these synapses, which is important to preserve temporal information about the sound. Furthermore, we demonstrate that GluA3 contributes to the normal function and development of the presynaptic terminal, whose properties shape short-term plasticity. GluA3 slows and attenuates synaptic depression, and makes it less dependent on the presynaptic firing rates. This may help BCs to transfer information about the high rates of activity that occur at the synapse in vivo to postsynaptic targets that use rate information for sound localization.


Assuntos
Núcleo Coclear/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/fisiologia , Transmissão Sináptica/fisiologia , Animais , Percepção Auditiva/fisiologia , Benzotiadiazinas/farmacologia , Núcleo Coclear/citologia , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Receptores de AMPA/efeitos dos fármacos , Receptores de AMPA/genética , Localização de Som/fisiologia , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
17.
Neuroimage ; 239: 118302, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174391

RESUMO

The positron emission tomography (PET) radioligand [11C]UCB-J binds to synaptic vesicle protein 2A (SV2A) and is used to investigate synaptic density in the living brain. Clinical studies have indicated reduced [11C]UCB-J binding in Alzheimer's disease (AD) and Parkinson's disease (PD) brains compared to healthy controls. Still, it is unknown whether [11C]UCB-J PET can visualise synaptic loss in mouse models of these disorders. Such models are essential for understanding disease pathology and for evaluating the effects of novel disease-modifying drug candidates. In the present study, synaptic density in transgenic models of AD (ArcSwe) and PD (L61) was studied using [11C]UCB-J PET. Data were acquired during 60 min after injection, and time-activity curves (TACs) in different brain regions and the left ventricle of the heart were generated based on the dynamic PET images. The [11C]UCB-J brain concentrations were expressed as standardised uptake value (SUV) over time. The area under the SUV curve (AUC), the ratio of AUC in the brain to that in the heart (AUCbrain/blood), and the volume of distribution (VT) obtained by kinetic modelling using the heart TAC as input were compared between transgenic and age-matched wild type (WT) mice. The L61 mice displayed 11-13% lower AUCbrain/blood ratio and brain VT generated by kinetic modeling compared to the control WT mice. In general, also transgenic ArcSwe mice tended to show lower [11C]UCB-J brain exposure than age-matched WT controls, but variation within the different animal groups was high. Older WT mice (18-20 months) showed lower [11C]UCB-J brain exposure than younger WT mice (8-9 months). Together, these data imply that [11C]UCB-J PET reflects synaptic density in mouse models of neurodegeneration and that inter-subject variation is large. In addition, the study suggested that model-independent AUCbrain/blood ratio can be used to evaluate [11C]UCB-J binding as an alternative to full pharmacokinetic modelling.


Assuntos
Peptídeos beta-Amiloides/análise , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/farmacocinética , Modelos Animais de Doenças , Glicoproteínas de Membrana/análise , Proteínas do Tecido Nervoso/análise , Fragmentos de Peptídeos/análise , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Pirrolidinonas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Vesículas Sinápticas/ultraestrutura , Sinucleinopatias/diagnóstico por imagem , Envelhecimento , Doença de Alzheimer , Peptídeos beta-Amiloides/genética , Animais , Área Sob a Curva , Encéfalo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Doença de Parkinson , Fragmentos de Peptídeos/genética
18.
Cereb Cortex ; 30(5): 3209-3227, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31813963

RESUMO

Synapses are key structural determinants for information processing and computations in the normal and pathologically altered brain. Here, the quantitative morphology of excitatory synaptic boutons in the "reeler" mutant, a model system for various neurological disorders, was investigated and compared with wild-type (WT) mice using high-resolution, fine-scale electron microscopy (EM) and quantitative three-dimensional (3D) models of synaptic boutons. Beside their overall geometry, the shape and size of presynaptic active zones (PreAZs) and postsynaptic densities (PSDs) forming the active zones and the three pools of synaptic vesicles (SVs), namely the readily releasable pool (RRP), the recycling pool (RP), and the resting pool, were quantified. Although the reeler mouse neocortex is severely disturbed, no significant differences were found in most of the structural parameters investigated: the size of boutons (~3 µm2), size of the PreAZs and PSDs (~0.17 µm2), total number of SVs, and SVs within a perimeter (p) of 10 nm and p20 nm RRP; the p60 nm, p100 nm, and p60-p200 nm RP; and the resting pool, except the synaptic cleft width. Taken together, the synaptic organization and structural composition of synaptic boutons in the reeler neocortex remain comparably "normal" and may thus contribute to a "correct" wiring of neurons within the reeler cortical network.


Assuntos
Neocórtex/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Animais , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Microscopia Eletrônica
19.
J Neurosci ; 39(12): 2163-2183, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30655355

RESUMO

The regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin-dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated, and whether SVs are cleared en masse together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real-time to support synaptic health. To address these questions, we have developed an imaging-based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light-activated ROS generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy-mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons of either sex, presynaptic autophagy can be induced in as little as 5-10 min and eliminates primarily the damaged protein rather than the SV en masse. Importantly, we also find that autophagy is essential for synaptic function, as light-activated damage to, for example, Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function.SIGNIFICANCE STATEMENT The real-time surveillance and clearance of synaptic proteins are thought to be vital to the health, functionality, and integrity of vertebrate synapses and are compromised in neurodegenerative disorders, yet the fundamental mechanisms regulating these systems remain enigmatic. Our analysis reveals that presynaptic autophagy is a critical part of a real-time clearance system at synapses capable of responding to local damage of synaptic vesicle proteins within minutes and to be critical for the ongoing functionality of these synapses. These data indicate that synapse autophagy is not only locally regulated but also crucial for the health and functionality of vertebrate presynaptic boutons.


Assuntos
Autofagia/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Células HEK293 , Células HeLa , Hipocampo/ultraestrutura , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura
20.
Synapse ; 74(2): e22136, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31574172

RESUMO

The crayfish claw opener neuromuscular junction is a biological model for studying presynaptic neuromodulation by serotonin (5HT) and synaptic vesicle recycling. It has been hypothesized that 5HT enhances release by recruiting a population of either previously nonrecycling or "reluctant" vesicles to increase the readily releasable pool. To determine if 5HT activates a distinct population of synaptic vesicles, recycling membranes were labeled with the membrane dye, FM1-43. Unloading (destaining) protocols could not resolve a population of vesicles that were only releasable in the presence of 5HT. Instead, we conclude synaptic vesicles change behavior in axon terminals independent of 5HT, becoming less likely to exocytose and unload dye over periods of >1 hr after recycling. We hypothesized this to be due to the slow conversion of a portion of recycled vesicles to a difficult to release state. The possibility that vesicles in these pools were spatially separated within the terminal was tested using photoconversion of FM1-43 and transmission electron microscopy. The location of FM1-43-labeled vesicles fixed 2 min following 3 min of 20-Hz stimulation did not reveal preferential localization of recycling vesicles specifically near release sites and the distribution of labeled vesicles was not significantly different between early (2 min) and late (180 min) time points. Terminals fixed 30 s following stimulation contained a significant proportion of vesicular structures equivalent in diameter to 2-5 regular vesicles, with multivesicular bodies and calveoli rarely seen, suggesting that endocytosis during sustained release at crayfish terminals occurs via multiple routes, most commonly through large "vesicle" intermediates.


Assuntos
Exocitose , Junção Neuromuscular/metabolismo , Serotonina/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Astacoidea , Junção Neuromuscular/fisiologia , Potenciais Sinápticos , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA