Your browser doesn't support javascript.
loading
Evolutionary engineering and transcriptomic analysis of nickel-resistant Saccharomyces cerevisiae.
Küçükgöze, Gökhan; Alkim, Ceren; Yilmaz, Ülkü; Kisakesen, H Ibrahim; Gündüz, Sema; Akman, Süleyman; Çakar, Z Petek.
Affiliation
  • Küçükgöze G; Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Maslak, Istanbul, Turkey; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Maslak, Istanbul, Turkey.
FEMS Yeast Res ; 13(8): 731-46, 2013 Dec.
Article in En | MEDLINE | ID: mdl-23992612
ABSTRACT
Increased exposure to nickel compounds and alloys due to industrial development has resulted in nickel pollution and many pathological effects on human health. However, there is very limited information about nickel response, transport, and tolerance in eukaryotes. To investigate nickel resistance in the model eukaryote Saccharomyces cerevisiae, evolutionary engineering by batch selection under gradually increasing nickel stress levels was performed. Nickel hyper-resistant mutants that could resist up to 5.3 mM NiCl2 , a lethal level for the reference strain, were selected. The mutants were also cross-resistant against iron, cobalt, zinc, and manganese stresses and accumulated more than twofold higher nickel than the reference strain. Global transcriptomic analysis revealed that 640 upregulated genes were related to iron homeostasis, stress response, and oxidative damage, implying that nickel resistance may share common mechanisms with iron and cobalt resistance, general stress response, and oxidative damage.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae / Evolution, Molecular / Gene Expression Profiling / Drug Resistance, Fungal / Transcriptome / Nickel Language: En Journal: FEMS Yeast Res Journal subject: MICROBIOLOGIA Year: 2013 Type: Article Affiliation country: Turkey

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae / Evolution, Molecular / Gene Expression Profiling / Drug Resistance, Fungal / Transcriptome / Nickel Language: En Journal: FEMS Yeast Res Journal subject: MICROBIOLOGIA Year: 2013 Type: Article Affiliation country: Turkey