Your browser doesn't support javascript.
loading
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.
Arpaia, Nicholas; Campbell, Clarissa; Fan, Xiying; Dikiy, Stanislav; van der Veeken, Joris; deRoos, Paul; Liu, Hui; Cross, Justin R; Pfeffer, Klaus; Coffer, Paul J; Rudensky, Alexander Y.
Affiliation
  • Arpaia N; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • Campbell C; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • Fan X; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • Dikiy S; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • van der Veeken J; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • deRoos P; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • Liu H; Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • Cross JR; Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
  • Pfeffer K; Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Duesseldorf, Duesseldorf 40225, Germany.
  • Coffer PJ; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [3] Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrec
  • Rudensky AY; 1] Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
Nature ; 504(7480): 451-5, 2013 Dec 19.
Article in En | MEDLINE | ID: mdl-24226773
ABSTRACT
Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Symbiosis / Butyrates / Cell Differentiation / T-Lymphocytes, Regulatory / Intestinal Mucosa / Intestines Limits: Animals Language: En Journal: Nature Year: 2013 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Symbiosis / Butyrates / Cell Differentiation / T-Lymphocytes, Regulatory / Intestinal Mucosa / Intestines Limits: Animals Language: En Journal: Nature Year: 2013 Type: Article Affiliation country: United States