Your browser doesn't support javascript.
loading
Molecular identification of two prophenoloxidase-activating proteases from the hemocytes of Plutella xylostella (Lepidoptera: Plutellidae) and their transcript abundance changes in response to microbial challenges.
Shi, Min; Chen, Xiao-Yu; Zhu, Ni; Chen, Xue-Xin.
Affiliation
  • Shi M; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China.
  • Chen XY; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China.
  • Zhu N; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China.
  • Chen XX; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, China xxchen@zju.edu.cn.
J Insect Sci ; 14: 179, 2014.
Article in En | MEDLINE | ID: mdl-25399433
ABSTRACT
The phenoloxidase (PO) activation system plays an important role in insect innate immunity, particularly in wound healing and pathogen defense. A key member of this system is prophenoloxidase-activating protease (PAP), which is the direct activator of prophenoloxidase (proPO). Despite their importance in the insect PO activation system, content of studies is limited. In this article, we identify two complementary DNAs (cDNAs), PxPAPa and PxPAPb, encoding possible PAPs, from immunized larval hemocytes of the diamondback moth, Plutella xylostella (L.), by RACE method. PxPAPa is 1,149-bp long and encodes a 382-residue open reading frame (ORF) with a predicted 17-residue signal peptide, a clip domain, and a Tryp_Spc domain. PxPAPb is 1,650-bp long and encodes a 440-residue ORF with a predicted 20-residue signal peptide, two clip domains, and a Tryp_Spc domain. PxPAPa and PxPAPb have a high sequence similarity to Manduca sexta (L.) PAP1 and PAP3, respectively. We also examined the transcript patterns of PxPAPa, PxPAPb, and pxPAP3, another clip-domain serine protease gene, response to different microbial challenges by using real-time quantitative polymerase chain reaction. The results show that the transcript abundance of PxPAPa is significantly increased by Micrococcus luteus and Escherichia coli but not Candida albicans. PxPAPb is induced only by Mi. luteus, whereas pxPAP3 could be induced by all the microbes in the test, but the transcript patterns of Mi. luteus, E. coli, and C. albicans are completely different. This study provides new insights into the molecular events that occur during the immune response, particularly melanization cascade that is involved in encapsulation and nodulation of pathogen or parasite invaders via hemocytes in host insects.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Serine Endopeptidases / Insect Proteins / Immunity, Innate / Moths Type of study: Diagnostic_studies Limits: Animals Language: En Journal: J Insect Sci Journal subject: BIOLOGIA Year: 2014 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Serine Endopeptidases / Insect Proteins / Immunity, Innate / Moths Type of study: Diagnostic_studies Limits: Animals Language: En Journal: J Insect Sci Journal subject: BIOLOGIA Year: 2014 Type: Article Affiliation country: China