Your browser doesn't support javascript.
loading
Identification of drug targets related to the induction of ventricular tachyarrhythmia through a systems chemical biology approach.
Ivanov, Sergey M; Lagunin, Alexey A; Pogodin, Pavel V; Filimonov, Dmitry A; Poroikov, Vladimir V.
Affiliation
  • Ivanov SM; *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia sergey.ivanov@ibmc.msk.ru.
  • Lagunin AA; *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical Univ
  • Pogodin PV; *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical Univ
  • Filimonov DA; *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
  • Poroikov VV; *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical University, 117997 Moscow, Russia *Institute of Biomedical Chemistry, 119121 Moscow, Russia and Medico-Biological Faculty, Pirogov Russian National Research Medical Univ
Toxicol Sci ; 145(2): 321-36, 2015 Jun.
Article in En | MEDLINE | ID: mdl-25766883
ABSTRACT
Ventricular tachyarrhythmia (VT) is one of the most serious adverse drug reactions leading to death. The in vitro assessment of the interaction of lead compounds with HERG potassium channels, which is one of the primary known causes of VT induction, is an obligatory test during drug development. However, experimental and clinical data support the hypothesis that the inhibition of ion channels is not the only mechanism of VT induction. Therefore, the identification of other drug targets contributing to the induction of VT is crucial. We developed a systems chemical biology approach for searching for such targets. This approach involves the following

steps:

(1) creation of special sets of VT-causing and non-VT-causing drugs, (2) statistical analysis of in silico predicted drug-target interaction profiles of studied drugs with 1738 human protein targets for the identification of potential VT-related targets, (3) gene ontology and pathway enrichment analysis of the revealed targets for the identification of biological processes underlying drug-induced VT etiology, (4) creation of a cardiomyocyte regulatory network (CRN) based on general and heart-specific signaling and regulatory pathways, and (5) simulation of changes in the behavior of the CRN caused by the inhibition of each node for the identification of potential VT-related targets. As a result, we revealed 312 potential VT-related targets and classified them into 3 confidence categories high (36 proteins), medium (111 proteins), and low (165 proteins) classes. The most probable targets may serve as a basis for experimental confirmation and may be used for in vitro or in silico assessments of the relationships between drug candidates and drug-induced VT, the understanding of contraindications of drug application and dangerous drug combinations.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Long QT Syndrome / Signal Transduction / Tachycardia, Ventricular / Toxicity Tests / Myocytes, Cardiac / Systems Biology / Heart Conduction System Type of study: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Toxicol Sci Journal subject: TOXICOLOGIA Year: 2015 Type: Article Affiliation country: RUSSIA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Long QT Syndrome / Signal Transduction / Tachycardia, Ventricular / Toxicity Tests / Myocytes, Cardiac / Systems Biology / Heart Conduction System Type of study: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Toxicol Sci Journal subject: TOXICOLOGIA Year: 2015 Type: Article Affiliation country: RUSSIA