Your browser doesn't support javascript.
loading
Compartmentalization of a bistable switch enables memory to cross a feedback-driven transition.
Doncic, Andreas; Atay, Oguzhan; Valk, Ervin; Grande, Alicia; Bush, Alan; Vasen, Gustavo; Colman-Lerner, Alejandro; Loog, Mart; Skotheim, Jan M.
Affiliation
  • Doncic A; Department of Biology, Stanford University, Stanford, CA 94305, USA.
  • Atay O; Department of Biology, Stanford University, Stanford, CA 94305, USA.
  • Valk E; Institute of Technology, University of Tartu, 50411, Estonia.
  • Grande A; IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Bush A; IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Vasen G; IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Colman-Lerner A; IFIBYNE-UBA-CONICET and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Loog M; Institute of Technology, University of Tartu, 50411, Estonia.
  • Skotheim JM; Department of Biology, Stanford University, Stanford, CA 94305, USA. Electronic address: skotheim@stanford.edu.
Cell ; 160(6): 1182-95, 2015 Mar 12.
Article in En | MEDLINE | ID: mdl-25768911
ABSTRACT
Cells make accurate decisions in the face of molecular noise and environmental fluctuations by relying not only on present pathway activity, but also on their memory of past signaling dynamics. Once a decision is made, cellular transitions are often rapid and switch-like due to positive feedback loops in the regulatory network. While positive feedback loops are good at promoting switch-like transitions, they are not expected to retain information to inform subsequent decisions. However, this expectation is based on our current understanding of network motifs that accounts for temporal, but not spatial, dynamics. Here, we show how spatial organization of the feedback-driven yeast G1/S switch enables the transmission of memory of past pheromone exposure across this transition. We expect this to be one of many examples where the exquisite spatial organization of the eukaryotic cell enables previously well-characterized network motifs to perform new and unexpected signal processing functions.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae Type of study: Prognostic_studies Language: En Journal: Cell Year: 2015 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae Type of study: Prognostic_studies Language: En Journal: Cell Year: 2015 Type: Article Affiliation country: United States