Your browser doesn't support javascript.
loading
The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading.
J Biomech Eng ; 138(8)2016 08 01.
Article in En | MEDLINE | ID: mdl-27322199
To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Posture / Range of Motion, Articular / Weight-Bearing / Compressive Strength / Lumbar Vertebrae / Models, Biological Type of study: Diagnostic_studies / Prognostic_studies Limits: Animals / Humans Language: En Journal: J Biomech Eng Year: 2016 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Posture / Range of Motion, Articular / Weight-Bearing / Compressive Strength / Lumbar Vertebrae / Models, Biological Type of study: Diagnostic_studies / Prognostic_studies Limits: Animals / Humans Language: En Journal: J Biomech Eng Year: 2016 Type: Article