Your browser doesn't support javascript.
loading
P2-Type NaxCu0.15Ni0.20Mn0.65O2 Cathodes with High Voltage for High-Power and Long-Life Sodium-Ion Batteries.
Kang, Wenpei; Yu, Denis Y W; Lee, Pui-Kit; Zhang, Zhenyu; Bian, Haidong; Li, Wenyue; Ng, Tsz-Wai; Zhang, Wenjun; Lee, Chun-Sing.
Affiliation
  • Kang W; State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China) , Qingdao 266580, People's Republic of China.
ACS Appl Mater Interfaces ; 8(46): 31661-31668, 2016 Nov 23.
Article in En | MEDLINE | ID: mdl-27801566
Cu-Ni-Mn-based ternary P2-type NaxCu0.15Ni0.20Mn0.65O2 (x = 0.50, 0.67, and 0.75) cathodes for sodium-ion batteries (SIBs) are synthesized by a co-precipitation method. We find that Na content plays a key role on the structure, morphology, and the charge-discharge performances of these materials. For x = 0.67 and 0.75, superstructure from Na+-vacancy ordering is observed, while it is absent in the x = 0.50 sample. Despite the same synthesis conditions, materials with x = 0.67 and 0.75 show smaller particle sizes compared to that of the x = 0.50 sample. In addition, redox potentials of the materials differ significantly even though they have the same transition metal ratios. These differences are attributed to the changes in local structures of the as-prepared materials arising from the different amount of Na and possibly oxygen in the lattice. Materials with x = 0.67 and 0.75 show excellent rate performance and cycle stability when tested as cathode material of SIBs. Average discharge potential is as high as 3.41 V versus Na-Na+ with capacity of 87 mAh g-1 at 20 mA g-1. Excellent capacity and cycle stability are maintained even when they are tested with higher current rates. For instance, a capacity of 62.3 mAh g-1 is obtained from the x = 0.67 sample at 1000 mA g-1 after 1000 cycles between 3.0 and 4.2 V without any decrease in capacity.
Key words
Search on Google
Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2016 Type: Article
Search on Google
Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2016 Type: Article