Your browser doesn't support javascript.
loading
Tetraphenylethylene derivative capped CH3NH3PbBr3 nanocrystals: AIE-activated assembly into superstructures.
Zhang, Feng; Zhou, Tianye; Liu, Guogang; Shi, Jianbing; Zhong, Haizheng; Dong, Yuping.
Affiliation
  • Zhang F; Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China. chdongyp@bit.edu.cn hzzhong@bit.edu.cn.
  • Zhou T; Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China. chdongyp@bit.edu.cn hzzhong@bit.edu.cn.
  • Liu G; Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China. chdongyp@bit.edu.cn hzzhong@bit.edu.cn.
  • Shi J; Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China. chdongyp@bit.edu.cn hzzhong@bit.edu.cn.
  • Zhong H; Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China. chdongyp@bit.edu.cn hzzhong@bit.edu.cn.
  • Dong Y; Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China. chdongyp@bit.edu.cn hzzhong@bit.edu.cn.
Faraday Discuss ; 196: 91-99, 2017 02 22.
Article in En | MEDLINE | ID: mdl-27898115
The surfaces of semiconductor nanocrystals have been known to be a very important factor in determining their optical properties. The introduction of functionalized ligands can further enhance the interactions between nanocrystals, which is beneficial for the assembly of nanocrystals. In a previous report, we developed a ligand-assisted reprecipitation method to fabricate organometal halide perovskite nanocrystals capped with octylamine and oleic acid. Here, a TPE derivative 3-(4-(1,2,2-triphenylvinyl)phenoxy)propan-1-amine, which shows a typical aggregation induced emission feature, is applied to replace octylamine to fabricate CH3NH3PbBr3 nanocrystals. The obtained CH3NH3PbBr3 nanocrystals were nanocubes (average diameter ∼ 11.1 nm) and are likely to assemble into ordered superstructures. By adjusting the chain length of the TPE derivative, we found that the assembly of the CH3NH3PbBr3 nanocrystals was correlated with the interactions between the TPE groups. This provides a new platform to investigate the ligand effects in nanocrystal solids and may potentially achieve enhanced optical and electrical properties.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Faraday Discuss Journal subject: QUIMICA Year: 2017 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Faraday Discuss Journal subject: QUIMICA Year: 2017 Type: Article