Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B.
N Engl J Med
; 375(22): 2165-2176, 2016 12 01.
Article
in En
| MEDLINE
| ID: mdl-27959755
BACKGROUND: Severe combined immunodeficiency (SCID) is characterized by arrested T-lymphocyte production and by B-lymphocyte dysfunction, which result in life-threatening infections. Early diagnosis of SCID through population-based screening of newborns can aid clinical management and help improve outcomes; it also permits the identification of previously unknown factors that are essential for lymphocyte development in humans. METHODS: SCID was detected in a newborn before the onset of infections by means of screening of T-cell-receptor excision circles, a biomarker for thymic output. On confirmation of the condition, the affected infant was treated with allogeneic hematopoietic stem-cell transplantation. Exome sequencing in the patient and parents was followed by functional analysis of a prioritized candidate gene with the use of human hematopoietic stem cells and zebrafish embryos. RESULTS: The infant had "leaky" SCID (i.e., a form of SCID in which a minimal degree of immune function is preserved), as well as craniofacial and dermal abnormalities and the absence of a corpus callosum; his immune deficit was fully corrected by hematopoietic stem-cell transplantation. Exome sequencing revealed a heterozygous de novo missense mutation, p.N441K, in BCL11B. The resulting BCL11B protein had dominant negative activity, which abrogated the ability of wild-type BCL11B to bind DNA, thereby arresting development of the T-cell lineage and disrupting hematopoietic stem-cell migration; this revealed a previously unknown function of BCL11B. The patient's abnormalities, when recapitulated in bcl11ba-deficient zebrafish, were reversed by ectopic expression of functionally intact human BCL11B but not mutant human BCL11B. CONCLUSIONS: Newborn screening facilitated the identification and treatment of a previously unknown cause of human SCID. Coupling exome sequencing with an evaluation of candidate genes in human hematopoietic stem cells and in zebrafish revealed that a constitutional BCL11B mutation caused human multisystem anomalies with SCID and also revealed a prethymic role for BCL11B in hematopoietic progenitors. (Funded by the National Institutes of Health and others.).
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Repressor Proteins
/
Abnormalities, Multiple
/
Hematopoietic Stem Cells
/
Severe Combined Immunodeficiency
/
Mutation, Missense
/
Tumor Suppressor Proteins
Type of study:
Prognostic_studies
/
Screening_studies
Limits:
Animals
/
Humans
/
Male
/
Newborn
Language:
En
Journal:
N Engl J Med
Year:
2016
Type:
Article