Your browser doesn't support javascript.
loading
Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.
Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand.
Affiliation
  • Brusamarello-Santos LC; Department of Biochemistry and Molecular Biology, Federal University of Paraná, Centro Politécnico, Curutiba, Paraná, Brazil.
  • Gilard F; Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France.
  • Brulé L; Plateforme Métabolisme-Métabolome, Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay, France.
  • Quilleré I; Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France.
  • Gourion B; Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée 3559, Centre National de la Recherche Scientifique, Versailles, France.
  • Ratet P; Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay, France.
  • Maltempi de Souza E; Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Orsay, France.
  • Lea PJ; Department of Biochemistry and Molecular Biology, Federal University of Paraná, Centro Politécnico, Curutiba, Paraná, Brazil.
  • Hirel B; Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.
PLoS One ; 12(3): e0174576, 2017.
Article in En | MEDLINE | ID: mdl-28362815
ABSTRACT
Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number of metabolites exhibited a maize-genotype specific pattern of accumulation, suggesting that the highly diverse maize genetic resources could be further exploited in terms of beneficial plant-bacterial interactions for optimizing maize growth, with reduced N fertilization inputs.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Azospirillum brasilense / Plant Roots / Zea mays / Herbaspirillum / Nitrogen-Fixing Bacteria / Nitrogen Type of study: Prognostic_studies Country/Region as subject: America do sul / Brasil Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2017 Type: Article Affiliation country: Brazil

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Azospirillum brasilense / Plant Roots / Zea mays / Herbaspirillum / Nitrogen-Fixing Bacteria / Nitrogen Type of study: Prognostic_studies Country/Region as subject: America do sul / Brasil Language: En Journal: PLoS One Journal subject: CIENCIA / MEDICINA Year: 2017 Type: Article Affiliation country: Brazil