Your browser doesn't support javascript.
loading
Topotactic Fluorine Insertion into the Channels of FeSb2O4-Related Materials.
de Laune, Benjamin P; Rees, Gregory J; Marco, José F; Hah, Hien-Yoong; Johnson, Charles E; Johnson, Jacqueline A; Berry, Frank J; Hanna, John V; Greaves, Colin.
Affiliation
  • de Laune BP; School of Chemistry, University of Birmingham , Birmingham B15 2TT, U.K.
  • Rees GJ; Department of Physics, University of Warwick , Coventry CV4 7AL, U.K.
  • Marco JF; Instituto de Quimica-Fisica "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
  • Berry FJ; School of Chemistry, University of Birmingham , Birmingham B15 2TT, U.K.
  • Hanna JV; Department of Physics, University of Warwick , Coventry CV4 7AL, U.K.
  • Greaves C; School of Chemistry, University of Birmingham , Birmingham B15 2TT, U.K.
Inorg Chem ; 56(16): 10078-10089, 2017 Aug 21.
Article in En | MEDLINE | ID: mdl-28776991
ABSTRACT
This paper discusses the fluorination characteristics of phases related to FeSb2O4, by reporting the results of a detailed study of Mg0.50Fe0.50Sb2O4 and Co0.50Fe0.50Sb2O4. Reaction with fluorine gas at low temperatures (typically 230 °C) results in topotactic insertion of fluorine into the channels, which are an inherent feature of the structure. Neutron powder diffraction and solid state NMR studies show that the interstitial fluoride ions are bonded to antimony within the channel walls to form Sb-F-Sb bridges. To date, these reactions have been observed only when Fe2+ ions are present within the chains of edge-linked octahedra (FeO6 in FeSb2O4) that form the structural channels. Oxidation of Fe2+ to Fe3+ is primarily responsible for balancing the increased negative charge associated with the presence of the fluoride ions within the channels. For the two phases studied, the creation of Fe3+ ions within the chains of octahedra modify the magnetic exchange interactions to change the ground-state magnetic symmetry to C-type magnetic order in contrast to the A-type order observed for the unfluorinated oxide parents.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2017 Type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2017 Type: Article Affiliation country: United kingdom