Your browser doesn't support javascript.
loading
Visualizing miR-155 To Monitor Breast Tumorigenesis and Response to Chemotherapeutic Drugs by a Self-Assembled Photoacoustic Nanoprobe.
Cao, Wenhua; Gao, Wen; Liu, Zhenhua; Hao, Wenjing; Li, Xiang; Sun, Yuhui; Tong, Lili; Tang, Bo.
Affiliation
  • Cao W; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Gao W; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Liu Z; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Hao W; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Li X; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Sun Y; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Tong L; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
  • Tang B; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences , Shandong Normal Universi
Anal Chem ; 90(15): 9125-9131, 2018 08 07.
Article in En | MEDLINE | ID: mdl-29961324
MicroRNA-155 (miR-155), which facilitates breast tumor growth and invasion by promoting tumor cell proliferation and inhibiting cell apoptosis, is considered an ideal early diagnostic and prognostic marker. Herein, we developed a self-assembled hybridization chain reaction (HCR)-based photoacoustic (PA) nanoprobe for highly sensitive in situ monitoring of dynamic changes in miR-155 expression during breast tumorigenesis and chemotherapy. The PA nanoprobes (Au-H1/PEG and Au-H2/PEG) were constructed by linking poly(ethylene glycol) (PEG) and two hairpin DNA strands (H1 and H2, respectively) to the surface of gold nanoparticles (AuNPs). In the presence of miR-155, the PA nanoprobes self-assembled into Au aggregates via HCR between H1, H2, and miR-155. The decreased interparticle distance in these aggregates enhanced the surface plasmon resonance (SPR) in the AuNPs. Consequently, the absorption peak of the PA nanoprobes red-shifted, and strong PA signals were generated. This strategy enabled the sensitive and quantitative detection of miR-155 with a low detection limit of 0.25 nM. As a result, PA signals of miR-155 were captured on the second day after tumor inoculation when the solid tumor had not yet formed. Dynamic changes in miR-155 during tumor growth and chemotherapy were also monitored in real time to assess the therapeutic effects via PA imaging. By virtue of these advantages, the PA nanoprobes may provide a powerful platform for in situ detection of miR-155 and thus real-time monitoring of tumorigenesis and drug response in breast cancer.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast / Breast Neoplasms / MicroRNAs / Metal Nanoparticles / Photoacoustic Techniques / Carcinogenesis / Gold Limits: Animals Language: En Journal: Anal Chem Year: 2018 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Breast / Breast Neoplasms / MicroRNAs / Metal Nanoparticles / Photoacoustic Techniques / Carcinogenesis / Gold Limits: Animals Language: En Journal: Anal Chem Year: 2018 Type: Article