Your browser doesn't support javascript.
loading
Ultramicroporous Building Units as a Path to Bi-microporous Metal-Organic Frameworks with High Acetylene Storage and Separation Performance.
Li, Yong-Peng; Wang, Ying; Xue, Ying-Ying; Li, Hai-Peng; Zhai, Quan-Guo; Li, Shu-Ni; Jiang, Yu-Cheng; Hu, Man-Cheng; Bu, Xianhui.
Affiliation
  • Li YP; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Wang Y; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Xue YY; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Li HP; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Zhai QG; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Li SN; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Jiang YC; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Hu MC; Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
  • Bu X; Department of Chemistry and Biochemistry, California State University, Long Beach, California, 90840, USA.
Angew Chem Int Ed Engl ; 58(38): 13590-13595, 2019 Sep 16.
Article in En | MEDLINE | ID: mdl-31407503
A strategy called ultramicroporous building unit (UBU) is introduced. It allows the creation of hierarchical bi-porous features that work in tandem to enhance gas uptake capacity and separation. Smaller pores from UBUs promote selectivity, while larger inter-UBU packing pores increase uptake capacity. The effectiveness of this UBU strategy is shown with a cobalt MOF (denoted SNNU-45) in which octahedral cages with 4.5 Špore size serve as UBUs. The C2 H2 uptake capacity at 1 atm reaches 193.0 cm3 g-1 (8.6 mmol g-1 ) at 273 K and 134.0 cm3 g-1 (6.0 mmol g-1 ) at 298 K. Such high uptake capacity is accompanied by a high C2 H2 /CO2 selectivity of up to 8.5 at 298 K. Dynamic breakthrough studies at room temperature and 1 atm show a C2 H2 /CO2 breakthrough time up to 79 min g-1 , among top-performing MOFs. Grand canonical Monte Carlo simulations agree that ultrahigh C2 H2 /CO2 selectivity is mainly from UBU ultramicropores, while packing pores promote C2 H2 uptake capacity.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2019 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Angew Chem Int Ed Engl Year: 2019 Type: Article Affiliation country: China