Your browser doesn't support javascript.
loading
Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis.
Gibson, William J; Nafee, Tarek; Travis, Ryan; Yee, Megan; Kerneis, Mathieu; Ohman, Magnus; Gibson, C Michael.
Affiliation
  • Gibson WJ; The Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 930 Commonwealth Avenue, Boston, MA, USA.
  • Nafee T; The Department of Medicine, Brigham and Women's Hospital, Boston, USA.
  • Travis R; The Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 930 Commonwealth Avenue, Boston, MA, USA.
  • Yee M; The Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 930 Commonwealth Avenue, Boston, MA, USA.
  • Kerneis M; The Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 930 Commonwealth Avenue, Boston, MA, USA.
  • Ohman M; The Cardiovascular Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 930 Commonwealth Avenue, Boston, MA, USA.
  • Gibson CM; The Duke Clinical Research Institute, Duke University, Durham, USA.
J Thromb Thrombolysis ; 49(1): 1-9, 2020 01.
Article in En | MEDLINE | ID: mdl-31535314
Traditional statistical models allow population based inferences and comparisons. Machine learning (ML) explores datasets to develop algorithms that do not assume linear relationships between variables and outcomes and that may account for higher order interactions to make individualized outcome predictions. To evaluate the performance of machine learning models compared to traditional risk stratification methods for the prediction of major adverse cardiovascular events (MACE) and bleeding in patients with acute coronary syndrome (ACS) that are treated with antithrombotic therapy. Data on 24,178 ACS patients were pooled from four randomized controlled trials. The super learner ensemble algorithm selected weights for 23 machine learning models and was compared to traditional models. The efficacy endpoint was a composite of cardiovascular death, myocardial infarction, or stroke. The safety endpoint was a composite of TIMI major and minor bleeding or bleeding requiring medical attention. For the MACE outcome, the super learner model produced a higher c-statistic (0.734) than logistic regression (0.714), the TIMI risk score (0.489), and a new cardiovascular risk score developed in the dataset (0.644). For the bleeding outcome, the super learner demonstrated a similar c-statistic as the logistic regression model (0.670 vs. 0.671). The machine learning risk estimates were highly calibrated with observed efficacy and bleeding outcomes (Hosmer-Lemeshow p value = 0.692 and 0.970, respectively). The super learner algorithm was highly calibrated on both efficacy and safety outcomes and produced the highest c-statistic for prediction of MACE compared to traditional risk stratification methods. This analysis demonstrates a contemporary application of machine learning to guide patient-level antithrombotic therapy treatment decisions.Clinical Trial Registration ATLAS ACS-2 TIMI 46: https://clinicaltrials.gov/ct2/show/NCT00402597. Unique Identifier: NCT00402597. ATLAS ACS-2 TIMI 51: https://clinicaltrials.gov/ct2/show/NCT00809965. Unique Identifier: NCT00809965. GEMINI ACS-1: https://clinicaltrials.gov/ct2/show/NCT02293395. Unique Identifier: NCT02293395. PIONEER-AF PCI: https://clinicaltrials.gov/ct2/show/NCT01830543. Unique Identifier: NCT01830543.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acute Coronary Syndrome / Fibrinolytic Agents / Machine Learning / Hemorrhage Type of study: Clinical_trials / Etiology_studies / Prognostic_studies / Risk_factors_studies Limits: Aged / Female / Humans / Male / Middle aged Language: En Journal: J Thromb Thrombolysis Journal subject: ANGIOLOGIA Year: 2020 Type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acute Coronary Syndrome / Fibrinolytic Agents / Machine Learning / Hemorrhage Type of study: Clinical_trials / Etiology_studies / Prognostic_studies / Risk_factors_studies Limits: Aged / Female / Humans / Male / Middle aged Language: En Journal: J Thromb Thrombolysis Journal subject: ANGIOLOGIA Year: 2020 Type: Article Affiliation country: United States