Your browser doesn't support javascript.
loading
Mutations in the miR396 binding site of the growth-regulating factor gene VvGRF4 modulate inflorescence architecture in grapevine.
Rossmann, Susanne; Richter, Robert; Sun, Hequan; Schneeberger, Korbinian; Töpfer, Reinhard; Zyprian, Eva; Theres, Klaus.
Affiliation
  • Rossmann S; Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany.
  • Richter R; Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius-Kuehn Institute, 76833, Siebeldingen, Germany.
  • Sun H; Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany.
  • Schneeberger K; Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany.
  • Töpfer R; Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius-Kuehn Institute, 76833, Siebeldingen, Germany.
  • Zyprian E; Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, Julius-Kuehn Institute, 76833, Siebeldingen, Germany.
  • Theres K; Max Planck Institute for Plant Breeding Research, 50931, Cologne, Germany.
Plant J ; 101(5): 1234-1248, 2020 03.
Article in En | MEDLINE | ID: mdl-31663642
ABSTRACT
Bunch rot caused by Botrytis cinerea infections is a notorious problem in grapevine cultivation. To produce high quality fruits, grapevine plants are treated with fungicides, which is cost intensive and harmful to the environment. Conversely, loose cluster bunches show a considerably enhanced physical resilience to bunch diseases. With the aim to identify genetic determinants that modulate the development of bunch architecture, we have compared loose and compact 'Pinot noir' clones. Loose cluster architecture was found to be correlated with increased berry size, elongated rachis and elongated pedicels. Using transcriptome analysis in combination with whole genome sequencing, we have identified a growth-regulating factor gene, VvGRF4, upregulated and harbours heterozygous mutations in the loose cluster clones. At late stages of inflorescence development, the mRNA pools of loose cluster clones contain predominantly mRNAs derived from the mutated alleles, which are resistant to miR396 degradation. Expression of the VvGRF4 gene and its mutated variants in Arabidopsis demonstrates that it promotes pedicel elongation. Taken together, VvGRF4 modulates bunch architecture in grapevine 'Pinot noir' clones. This trait can be introduced into other cultivars using marker-assisted breeding or CRISPR-Cas9 technology. Related growth-regulating factors or other genes of the same pathway may have similar functions.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Diseases / Gene Expression Regulation, Plant / Botrytis / Vitis / MicroRNAs Type of study: Prognostic_studies Language: En Journal: Plant J Journal subject: BIOLOGIA MOLECULAR / BOTANICA Year: 2020 Type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plant Diseases / Gene Expression Regulation, Plant / Botrytis / Vitis / MicroRNAs Type of study: Prognostic_studies Language: En Journal: Plant J Journal subject: BIOLOGIA MOLECULAR / BOTANICA Year: 2020 Type: Article Affiliation country: Germany