Your browser doesn't support javascript.
loading
Sarcolipin expression in human skeletal muscle: Influence of energy balance and exercise.
Morales-Alamo, David; Martinez-Canton, Miriam; Gelabert-Rebato, Miriam; Martin-Rincon, Marcos; de Pablos-Velasco, Pedro; Holmberg, Hans-Christer; Calbet, Jose A L.
Affiliation
  • Morales-Alamo D; Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain.
  • Martinez-Canton M; IUIBS, Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria, Canary Islands, Spain.
  • Gelabert-Rebato M; IUIBS, Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria, Canary Islands, Spain.
  • Martin-Rincon M; Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain.
  • de Pablos-Velasco P; IUIBS, Instituto de Investigaciones Biomédicas y Sanitarias de Las Palmas de Gran Canaria, Canary Islands, Spain.
  • Holmberg HC; Nektium Pharma, Las Palmas de Gran Canaria, Spain.
  • Calbet JAL; Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Spain.
Scand J Med Sci Sports ; 30(3): 408-420, 2020 Mar.
Article in En | MEDLINE | ID: mdl-31674694
ABSTRACT
Sarcolipin (SLN) is a SERCA uncoupling protein associated with exercise performance and lower adiposity in mice. To determine SLN protein expression in human skeletal muscle and its relationship with adiposity, resting energy expenditure (REE), and performance, SLN was assessed by Western blot in 199 biopsies from two previous studies. In one study, 15 overweight volunteers underwent a pretest followed by 4 days of caloric restriction and exercise (45-minute one-arm cranking + 8-hour walking), and 3 days on a control diet. Muscle biopsies were obtained from the trained and non-exercised deltoid, and vastus lateralis (VL). In another study, 16 men performed seven sessions of 4-6 × 30-sec all-out sprints on the cycle ergometer with both limbs, and their VL and triceps brachii biopsied pre- and post-training. SLN expression was twofold and 44% higher in the VL than in the deltoids and triceps brachii, respectively. SLN was associated with neither adiposity nor REE, and was not altered by a severe energy deficit (5500 kcal/day). SLN and cortisol changes after the energy deficit were correlated (r = .38, P = .039). SLN was not altered by low-intensity exercise in the overweight subjects, whereas it was reduced after sprint training in the other group. The changes in SLN with sprint training were inversely associated with the changes in gross efficiency (r = -.59, P = .016). No association was observed between aerobic or anaerobic performance and SLN expression. In conclusion, sarcolipin appears to play no role in regulating the fat mass of men. Sprint training reduces sarcolipin expression, which may improve muscle efficiency.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Proteolipids / Basal Metabolism / Exercise / Muscle, Skeletal / Energy Metabolism / Muscle Proteins Limits: Adult / Humans / Male / Middle aged Language: En Journal: Scand J Med Sci Sports Journal subject: MEDICINA ESPORTIVA Year: 2020 Type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Proteolipids / Basal Metabolism / Exercise / Muscle, Skeletal / Energy Metabolism / Muscle Proteins Limits: Adult / Humans / Male / Middle aged Language: En Journal: Scand J Med Sci Sports Journal subject: MEDICINA ESPORTIVA Year: 2020 Type: Article Affiliation country: Spain