Your browser doesn't support javascript.
loading
Earthquake and typhoon trigger unprecedented transient shifts in shallow hydrothermal vents biogeochemistry.
Lebrato, Mario; Wang, Yiming V; Tseng, Li-Chun; Achterberg, Eric P; Chen, Xue-Gang; Molinero, Juan-Carlos; Bremer, Karen; Westernströer, Ulrike; Söding, Emanuel; Dahms, Hans-Uwe; Küter, Marie; Heinath, Verena; Jöhnck, Janika; Konstantinou, Kostas I; Yang, Yiing J; Hwang, Jiang-Shiou; Garbe-Schönberg, Dieter.
Affiliation
  • Lebrato M; Institute of Geosciences, Kiel University (CAU), Kiel, Germany. mlebrato13@gmail.com.
  • Wang YV; Bazaruto Center for Scientific Studies (BCSS), Benguerra Island, Mozambique. mlebrato13@gmail.com.
  • Tseng LC; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Achterberg EP; Max Planck Institute for the Science of Human History, Jena, Germany.
  • Chen XG; National Taiwan Ocean University, Keelung City, Taiwan.
  • Molinero JC; GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
  • Bremer K; Ocean College, Zhejiang University, Zhoushan City, China.
  • Westernströer U; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Söding E; Marine Biodiversity, Exploitation and Conservation (MARBEC), IRD/CNRS/IFREMER/University of Montpellier, Montpellier, France.
  • Dahms HU; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Küter M; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Heinath V; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Jöhnck J; Kaohsiung Medical University, Kaohsiung, Taiwan.
  • Konstantinou KI; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Yang YJ; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Hwang JS; Institute of Geosciences, Kiel University (CAU), Kiel, Germany.
  • Garbe-Schönberg D; National Central University, Taoyuan, Taiwan.
Sci Rep ; 9(1): 16926, 2019 11 15.
Article in En | MEDLINE | ID: mdl-31729442
ABSTRACT
Shallow hydrothermal vents are of pivotal relevance for ocean biogeochemical cycles, including seawater dissolved heavy metals and trace elements as well as the carbonate system balance. The Kueishan Tao (KST) stratovolcano off Taiwan is associated with numerous hydrothermal vents emitting warm sulfur-rich fluids at so-called White Vents (WV) and Yellow Vent (YV) that impact the surrounding seawater masses and habitats. The morphological and biogeochemical consequences caused by a M5.8 earthquake and a C5 typhoon ("Nepartak") hitting KST (12th May, and 2nd-10th July, 2016) were studied within a 10-year time series (2009-2018) combining aerial drone imagery, technical diving, and hydrographic surveys. The catastrophic disturbances triggered landslides that reshaped the shoreline, burying the seabed and, as a consequence, native sulfur accretions that were abundant on the seafloor disappeared. A significant reduction in venting activity and fluid flow was observed at the high-temperature YV. Dissolved Inorganic Carbon (DIC) maxima in surrounding seawater reached 3000-5000 µmol kg-1, and Total Alkalinity (TA) drawdowns were below 1500-1000 µmol kg-1 lasting for one year. A strong decrease and, in some cases, depletion of dissolved elements (Cd, Ba, Tl, Pb, Fe, Cu, As) including Mg and Cl in seawater from shallow depths to the open ocean followed the disturbance, with a recovery of Mg and Cl to pre-disturbance concentrations in 2018. The WV and YV benthic megafauna exhibited mixed responses in their skeleton MgCa and SrCa ratios, not always following directions of seawater chemical changes. Over 70% of the organisms increased skeleton MgCa ratio during rising DIC (higher CO2) despite decreasing seawater MgCa ratios showing a high level of resilience. KST benthic organisms have historically co-existed with such events providing them ecological advantages under extreme conditions. The sudden and catastrophic changes observed at the KST site profoundly reshaped biogeochemical processes in shallow and offshore waters for one year, but they remained transient in nature, with a possible recovery of the system within two years.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2019 Type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2019 Type: Article Affiliation country: Germany