Your browser doesn't support javascript.
loading
Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures.
Rienks, E D L; Wimmer, S; Sánchez-Barriga, J; Caha, O; Mandal, P S; Ruzicka, J; Ney, A; Steiner, H; Volobuev, V V; Groiss, H; Albu, M; Kothleitner, G; Michalicka, J; Khan, S A; Minár, J; Ebert, H; Bauer, G; Freyse, F; Varykhalov, A; Rader, O; Springholz, G.
Affiliation
  • Rienks EDL; Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Berlin, Germany.
  • Wimmer S; Institut für Festkörperphysik, Technische Universität Dresden, Dresden, Germany.
  • Sánchez-Barriga J; Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Dresden, Germany.
  • Caha O; Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Linz, Austria.
  • Mandal PS; Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Berlin, Germany.
  • Ruzicka J; Department of Condensed Matter Physics, Masaryk University, Brno, Czech Republic.
  • Ney A; Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Berlin, Germany.
  • Steiner H; Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany.
  • Volobuev VV; Department of Condensed Matter Physics, Masaryk University, Brno, Czech Republic.
  • Groiss H; Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Linz, Austria.
  • Albu M; Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Linz, Austria.
  • Kothleitner G; Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität, Linz, Austria.
  • Michalicka J; National Technical University 'Kharkiv Polytechnic Institute', Kharkiv, Ukraine.
  • Khan SA; International Research Centre MagTop and Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
  • Minár J; Christian Doppler Laboratory for Nanoscale Phase Transformations, Zentrum für Oberflächen- und Nanoanalytik, Johannes Kepler Universität, Linz, Austria.
  • Ebert H; Graz Center for Electron Microscopy, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz, Austria.
  • Bauer G; Graz Center for Electron Microscopy, Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Graz, Austria.
  • Freyse F; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
  • Varykhalov A; New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic.
  • Rader O; New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic.
  • Springholz G; Department Chemie, Ludwig-Maximilians-Universität, München, Germany.
Nature ; 576(7787): 423-428, 2019 12.
Article in En | MEDLINE | ID: mdl-31853081
ABSTRACT
Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1-8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nature Year: 2019 Type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nature Year: 2019 Type: Article Affiliation country: Germany