Your browser doesn't support javascript.
loading
Orosomucoid-like 3 Supports Rhinovirus Replication in Human Epithelial Cells.
Liu, Yiping; Bochkov, Yury A; Eickhoff, Jens C; Hu, Tianchen; Zumwalde, Nicholas A; Tan, Jin Wen; Lopez, Christopher; Fichtinger, Paul S; Reddy, Thiruchelvi R; Overmyer, Katherine A; Gumperz, Jennifer E; Coon, Joshua; Mathur, Sameer K; Gern, James E; Smith, Judith A.
Affiliation
  • Liu Y; Department of Pediatrics.
  • Bochkov YA; Department of Pediatrics.
  • Eickhoff JC; Department of Biostatistics and Medical Informatics, and.
  • Hu T; Department of Pediatrics.
  • Zumwalde NA; Department of Medical Microbiology and Immunology, and.
  • Tan JW; Department of Pediatrics.
  • Lopez C; Department of Pediatrics.
  • Fichtinger PS; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
  • Reddy TR; Morgridge Institute for Research, Madison, Wisconsin.
  • Overmyer KA; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; and.
  • Gumperz JE; Morgridge Institute for Research, Madison, Wisconsin.
  • Coon J; Department of Medical Microbiology and Immunology, and.
  • Mathur SK; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; and.
  • Gern JE; Morgridge Institute for Research, Madison, Wisconsin.
  • Smith JA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
Am J Respir Cell Mol Biol ; 62(6): 783-792, 2020 06.
Article in En | MEDLINE | ID: mdl-32078788
Polymorphism at the 17q21 gene locus and wheezing responses to rhinovirus (RV) early in childhood conspire to increase the risk of developing asthma. However, the mechanisms mediating this gene-environment interaction remain unclear. In this study, we investigated the impact of one of the 17q21-encoded genes, ORMDL3 (orosomucoid-like 3), on RV replication in human epithelial cells. ORMDL3 knockdown inhibited RV-A16 replication in HeLa, BEAS-2B, A549, and NCI-H358 epithelial cell lines and primary nasal and bronchial epithelial cells. Inhibition varied by RV species, as both minor and major group RV-A subtypes RV-B52 and RV-C2 were inhibited but not RV-C15 or RV-C41. ORMDL3 siRNA did not affect expression of the major group RV-A receptor ICAM-1 or initial internalization of RV-A16. The two major outcomes of ORMDL3 activity, SPT (serine palmitoyl-CoA transferase) inhibition and endoplasmic reticulum (ER) stress induction, were further examined: silencing ORMDL3 decreased RV-induced ER stress and IFN-ß mRNA expression. However, pharmacologic induction of ER stress and concomitant increased IFN-ß inhibited RV-A16 replication. Conversely, blockade of ER stress with tauroursodeoxycholic acid augmented replication, pointing to an alternative mechanism for the effect of ORMDL3 knockdown on RV replication. In comparison, the SPT inhibitor myriocin increased RV-A16 but not RV-C15 replication and negated the inhibitory effect of ORMDL3 knockdown. Furthermore, lipidomics analysis revealed opposing regulation of specific sphingolipid species (downstream of SPT) by myriocin and ORMDL3 siRNA, correlating with the effect of these treatments on RV replication. Together, these data revealed a requirement for ORMDL3 in supporting RV replication in epithelial cells via SPT inhibition.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Rhinovirus / Virus Replication / Epithelial Cells / Membrane Proteins Type of study: Etiology_studies Limits: Humans Language: En Journal: Am J Respir Cell Mol Biol Journal subject: BIOLOGIA MOLECULAR Year: 2020 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Rhinovirus / Virus Replication / Epithelial Cells / Membrane Proteins Type of study: Etiology_studies Limits: Humans Language: En Journal: Am J Respir Cell Mol Biol Journal subject: BIOLOGIA MOLECULAR Year: 2020 Type: Article