Your browser doesn't support javascript.
loading
Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein.
Romero, Hector; Serrano, Ester; Hernández-Tamayo, Rogelio; Carrasco, Begoña; Cárdenas, Paula P; Ayora, Silvia; Graumann, Peter L; Alonso, Juan C.
Affiliation
  • Romero H; Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
  • Serrano E; SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany.
  • Hernández-Tamayo R; Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
  • Carrasco B; Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
  • Cárdenas PP; SYNMIKRO, LOEWE-Zentrum für Synthetische Mikrobiologie, Marburg, Germany.
  • Ayora S; Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany.
  • Graumann PL; Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
  • Alonso JC; Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
Front Microbiol ; 11: 92, 2020.
Article in En | MEDLINE | ID: mdl-32117122
ABSTRACT
Ubiquitous RarA AAA+ ATPases play crucial roles in the cellular response to blocked replication forks in pro- and eukaryotes. Here, we provide evidence that absence of RarA reduced the viability of ΔrecA, ΔrecO, and recF15 cells during unperturbed growth. The rarA gene was epistatic to recO and recF genes in response to H2O2- or MMS-induced DNA damage. Conversely, the inactivation of rarA partially suppressed the HR defect of mutants lacking end-resection (ΔaddAB, ΔrecJ, ΔrecQ, ΔrecS) or branch migration (ΔruvAB, ΔrecG, ΔradA) activity. RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during homology search. The absence of RarA reduced RecA accumulation, and the formation of visible RecA threads in vivo upon DNA damage. When ΔrarA was combined with mutations in genuine RecA accessory genes, RecA accumulation was further reduced in ΔrarA ΔrecU and ΔrarA ΔrecX double mutant cells, and was blocked in ΔrarA recF15 cells. These results suggest that RarA contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA, and possibly antagonizes RecA filament disassembly.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Microbiol Year: 2020 Type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Microbiol Year: 2020 Type: Article Affiliation country: Spain