Your browser doesn't support javascript.
loading
DNA targeting and interference by a bacterial Argonaute nuclease.
Kuzmenko, Anton; Oguienko, Anastasiya; Esyunina, Daria; Yudin, Denis; Petrova, Mayya; Kudinova, Alina; Maslova, Olga; Ninova, Maria; Ryazansky, Sergei; Leach, David; Aravin, Alexei A; Kulbachinskiy, Andrey.
Affiliation
  • Kuzmenko A; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia. dr.ant.kuz@gmail.com.
  • Oguienko A; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. dr.ant.kuz@gmail.com.
  • Esyunina D; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Yudin D; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Petrova M; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Kudinova A; Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
  • Maslova O; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Ninova M; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Ryazansky S; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Leach D; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Aravin AA; Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
  • Kulbachinskiy A; Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
Nature ; 587(7835): 632-637, 2020 11.
Article in En | MEDLINE | ID: mdl-32731256
ABSTRACT
Members of the conserved Argonaute protein family use small RNA guides to locate their mRNA targets and regulate gene expression and suppress mobile genetic elements in eukaryotes1,2. Argonautes are also present in many bacterial and archaeal species3-5. Unlike eukaryotic proteins, several prokaryotic Argonaute proteins use small DNA guides to cleave DNA, a process known as DNA interference6-10. However, the natural functions and targets of DNA interference are poorly understood, and the mechanisms of DNA guide generation and target discrimination remain unknown. Here we analyse the activity of a bacterial Argonaute nuclease from Clostridium butyricum (CbAgo) in vivo. We show that CbAgo targets multicopy genetic elements and suppresses the propagation of plasmids and infection by phages. CbAgo induces DNA interference between homologous sequences and triggers DNA degradation at double-strand breaks in the target DNA. The loading of CbAgo with locus-specific small DNA guides depends on both its intrinsic endonuclease activity and the cellular double-strand break repair machinery. A similar interaction was reported for the acquisition of new spacers during CRISPR adaptation, and prokaryotic genomes that encode Ago nucleases are enriched in CRISPR-Cas systems. These results identify molecular mechanisms that generate guides for DNA interference and suggest that the recognition of foreign nucleic acids by prokaryotic defence systems involves common principles.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: DNA / Gene Silencing / Clostridium butyricum / Argonaute Proteins Language: En Journal: Nature Year: 2020 Type: Article Affiliation country: RUSSIA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: DNA / Gene Silencing / Clostridium butyricum / Argonaute Proteins Language: En Journal: Nature Year: 2020 Type: Article Affiliation country: RUSSIA