Your browser doesn't support javascript.
loading
Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions.
Wu, Zhi-Jing; Liu, Jia-Cheng; Man, Xin; Gu, Xin; Li, Ting-Yi; Cai, Chen; He, Ming-Hong; Shao, Yangyang; Lu, Ning; Xue, Xiaoli; Qin, Zhongjun; Zhou, Jin-Qiu.
Affiliation
  • Wu ZJ; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Liu JC; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Man X; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Gu X; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Li TY; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Cai C; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • He MH; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
  • Shao Y; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Lu N; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Xue X; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Qin Z; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
  • Zhou JQ; Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, China.
Elife ; 92020 08 05.
Article in En | MEDLINE | ID: mdl-32755541

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae / Chromosomal Proteins, Non-Histone / Telomere / Cell Cycle Proteins / Saccharomyces cerevisiae Proteins / Telomere-Binding Proteins Language: En Journal: Elife Year: 2020 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Saccharomyces cerevisiae / Chromosomal Proteins, Non-Histone / Telomere / Cell Cycle Proteins / Saccharomyces cerevisiae Proteins / Telomere-Binding Proteins Language: En Journal: Elife Year: 2020 Type: Article Affiliation country: China