Your browser doesn't support javascript.
loading
Big Data Approaches in Heart Failure Research.
Lanzer, Jan D; Leuschner, Florian; Kramann, Rafael; Levinson, Rebecca T; Saez-Rodriguez, Julio.
Affiliation
  • Lanzer JD; Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany.
  • Leuschner F; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
  • Kramann R; Internal Medicine II, Heidelberg University Hospital, Heidelberg, Germany.
  • Levinson RT; Department of Cardiology, Medical University Hospital, Heidelberg, Germany.
  • Saez-Rodriguez J; DZHK (German Centre for Cardiovascular Research), Heidelberg, Germany.
Curr Heart Fail Rep ; 17(5): 213-224, 2020 10.
Article in En | MEDLINE | ID: mdl-32783147
PURPOSE OF REVIEW: The goal of this review is to summarize the state of big data analyses in the study of heart failure (HF). We discuss the use of big data in the HF space, focusing on "omics" and clinical data. We address some limitations of this data, as well as their future potential. RECENT FINDINGS: Omics are providing insight into plasmal and myocardial molecular profiles in HF patients. The introduction of single cell and spatial technologies is a major advance that will reshape our understanding of cell heterogeneity and function as well as tissue architecture. Clinical data analysis focuses on HF phenotyping and prognostic modeling. Big data approaches are increasingly common in HF research. The use of methods designed for big data, such as machine learning, may help elucidate the biology underlying HF. However, important challenges remain in the translation of this knowledge into improvements in clinical care.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biomedical Research / Machine Learning / Big Data / Heart Failure Type of study: Prognostic_studies Limits: Humans Language: En Journal: Curr Heart Fail Rep Journal subject: CARDIOLOGIA Year: 2020 Type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biomedical Research / Machine Learning / Big Data / Heart Failure Type of study: Prognostic_studies Limits: Humans Language: En Journal: Curr Heart Fail Rep Journal subject: CARDIOLOGIA Year: 2020 Type: Article Affiliation country: Germany