Your browser doesn't support javascript.
loading
Sky-Blue Thermally Activated Delayed Fluorescence with Intramolecular Spatial Charge Transfer Based on a Dibenzothiophene Sulfone Emitter.
Yang, Sheng-Yi; Tian, Qi-Sheng; Yu, You-Jun; Zou, Sheng-Nan; Li, Hong-Cheng; Khan, Aziz; Wu, Qian-Han; Jiang, Zuo-Quan; Liao, Liang-Sheng.
Affiliation
  • Yang SY; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Tian QS; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Yu YJ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Zou SN; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Li HC; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Khan A; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Wu QH; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Jiang ZQ; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Liao LS; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
J Org Chem ; 85(16): 10628-10637, 2020 Aug 21.
Article in En | MEDLINE | ID: mdl-32806105
ABSTRACT
Intramolecular spatial charge transfer (ISCT) plays a critical role in determining the optical and charge transport properties of thermally activated delayed fluorescence (TADF) materials. Herein, a new donor/acceptor-type TADF compound based on rigid dibenzothiophene sulfone (DBTS) moiety, STF-DBTS, was designed and synthesized. Fluorene unit was used as a rigid linker to position the rigid acceptor and donor subunit in close vicinity with control over their spacing and molecular structure and to achieve high photoluminescence quantum yield (∼53%) and TADF property. For comparison purposes, we constructed the more flexible STF-DPS with a less rotationally constrained diphenylsulphone (DPS) acceptor instead of the rigid DBTS units, and STF-DPS showed no TADF properties and lower PLQY (16.0%). Organic light-emitting diodes (OLEDs) based on STF-DBTS achieve an external quantum efficiency (EQE) of 10.3% at 488 nm, which is a fivefold improvement in EQE with respect to STF-DPS.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Org Chem Year: 2020 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Org Chem Year: 2020 Type: Article Affiliation country: China