Your browser doesn't support javascript.
loading
Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis.
Huang, Yong-Heng; Hilal, Tarek; Loll, Bernhard; Bürger, Jörg; Mielke, Thorsten; Böttcher, Christoph; Said, Nelly; Wahl, Markus C.
Affiliation
  • Huang YH; Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
  • Hilal T; Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, 14195 Berlin, Germany.
  • Loll B; Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
  • Bürger J; Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, 14195 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, CCO-Virchowweg 6, 10117 Berlin, Germany.
  • Mielke T; Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institut für Molekulare Genetik, Ihnestraße 63-73, 14195 Berlin, Germany.
  • Böttcher C; Research Center of Electron Microscopy and Core Facility BioSupraMol, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 36a, 14195 Berlin, Germany.
  • Said N; Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
  • Wahl MC; Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany. Electronic address: m
Mol Cell ; 79(6): 1024-1036.e5, 2020 09 17.
Article in En | MEDLINE | ID: mdl-32871103
ABSTRACT
Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ribosomal Proteins / Ribosomes / DNA-Directed RNA Polymerases / Molecular Chaperones Language: En Journal: Mol Cell Journal subject: BIOLOGIA MOLECULAR Year: 2020 Type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ribosomal Proteins / Ribosomes / DNA-Directed RNA Polymerases / Molecular Chaperones Language: En Journal: Mol Cell Journal subject: BIOLOGIA MOLECULAR Year: 2020 Type: Article Affiliation country: Germany