Your browser doesn't support javascript.
loading
Leptin regulates exon-specific transcription of the Bdnf gene via epigenetic modifications mediated by an AKT/p300 HAT cascade.
Li, Chen; Meng, Fantao; Lei, Yun; Liu, Jing; Liu, Jing; Zhang, Jingyan; Liu, Fang; Liu, Cuilan; Guo, Ming; Lu, Xin-Yun.
Affiliation
  • Li C; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China. lc_0625@163.com.
  • Meng F; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA. lc_0625@163.com.
  • Lei Y; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China.
  • Liu J; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
  • Liu J; Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
  • Zhang J; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China.
  • Liu F; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
  • Liu C; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
  • Guo M; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Shandong, China.
  • Lu XY; Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA.
Mol Psychiatry ; 26(8): 3701-3722, 2021 08.
Article in En | MEDLINE | ID: mdl-33106599
ABSTRACT
Leptin is an adipocyte-derived hormone with pleiotropic functions affecting appetite and mood. While leptin's role in the regulation of appetite has been extensively studied in hypothalamic neurons, its function in the hippocampus, where it regulates mood-related behaviors, is poorly understood. Here, we show that the leptin receptor (LepRb) colocalizes with brain-derived neurotrophic factor (BDNF), a key player in the pathophysiology of major depression and the action of antidepressants, in the dentate gyrus of the hippocampus. Leptin treatment increases, whereas deficiency of leptin or leptin receptors decreases, total Bdnf mRNA levels, with distinct expression profiles of specific exons, in the hippocampus. Epigenetic analyses reveal that histone modifications, but not DNA methylation, underlie exon-specific transcription of the Bdnf gene induced by leptin. This is mediated by stimulation of AKT signaling, which in turn activates histone acetyltransferase p300 (p300 HAT), leading to changes in histone H3 acetylation and methylation at specific Bdnf promoters. Furthermore, deletion of Bdnf in the dentate gyrus, or specifically in LepRb-expressing neurons, abolishes the antidepressant-like effects of leptin. These findings indicate that leptin, acting via an AKT-p300 HAT epigenetic cascade, induces exon-specific Bdnf expression, which in turn is indispensable for leptin-induced antidepressant-like effects.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain-Derived Neurotrophic Factor / Leptin / Epigenesis, Genetic Limits: Animals Language: En Journal: Mol Psychiatry Journal subject: BIOLOGIA MOLECULAR / PSIQUIATRIA Year: 2021 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain-Derived Neurotrophic Factor / Leptin / Epigenesis, Genetic Limits: Animals Language: En Journal: Mol Psychiatry Journal subject: BIOLOGIA MOLECULAR / PSIQUIATRIA Year: 2021 Type: Article Affiliation country: China