Your browser doesn't support javascript.
loading
Proton Transfer in Nitromethane-Ammonia Clusters under VUV Single-Photon Ionization Explored by Infrared Spectroscopy and Theoretical Calculations.
Zhang, Yu; Xie, Min; Sun, Fufei; Zhang, Zhaoli; Nie, Wuyi; Sun, Xiaonan; Hu, Yongjun.
Affiliation
  • Zhang Y; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
  • Xie M; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
  • Sun F; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
  • Zhang Z; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
  • Nie W; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
  • Sun X; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
  • Hu Y; MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
J Phys Chem A ; 125(16): 3279-3287, 2021 Apr 29.
Article in En | MEDLINE | ID: mdl-33878869
ABSTRACT
It is known that the acidity and reactivity of the CH bond can be enhanced after ionization. Also, this property plays a pivotal role in proton transfer reaction and in the formation of new molecules. Herein, infrared spectroscopy and high-precision quantum chemical calculations are used to study the neutral and cationic clusters of nitromethane-ammonia (CH3NO2-NH3). It is found that in the neutral cluster, CH3NO2 and NH3 are mainly bonded by three intermolecular hydrogen bonds, in which electrostatic contribution plays a major role. After vacuum ultraviolet (VUV) single-photon ionization of CH3NO2-NH3, the positive charge redistributes from the ionized nitrogen atom of NH3 to the CH3NO2 molecule immediately. Then, the proton of CH3NO2 transfers to NH3 to form a proton-transferred type structure CH2NO2-NH4+, without any effective energy barrier, due to the positive hyperconjugation of cationic nitromethane. A closed loop of positive charge transfer takes place in the CH3NO2-NH3 cluster after VUV ionization. The present work demonstrates that both the proton transfer reaction and charge transfer process have occurred in the ionized CH3NO2-NH3 cluster. Moreover, it is found that the proton transfer reaction is a result of the highly acidic CH bond caused by hyperconjugation between the σ (CH) bond and π orbital.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Phys Chem A Journal subject: QUIMICA Year: 2021 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Phys Chem A Journal subject: QUIMICA Year: 2021 Type: Article Affiliation country: China