Your browser doesn't support javascript.
loading
Dimensional reduction based on peak fitting of Raman micro spectroscopy data improves detection of prostate cancer in tissue specimens.
Plante, Arthur; Dallaire, Frédérick; Grosset, Andrée-Anne; Nguyen, Tien; Birlea, Mirela; Wong, Jahg; Daoust, François; Roy, Noémi; Kougioumoutzakis, André; Azzi, Feryel; Aubertin, Kelly; Kadoury, Samuel; Latour, Mathieu; Albadine, Roula; Prendeville, Susan; Boutros, Paul; Fraser, Michael; Bristow, Rob G; van der Kwast, Theodorus; Orain, Michèle; Brisson, Hervé; Benzerdjeb, Nazim; Hovington, Hélène; Bergeron, Alain; Fradet, Yves; Têtu, Bernard; Saad, Fred; Trudel, Dominique; Leblond, Frédéric.
Affiliation
  • Plante A; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Dallaire F; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Grosset AA; Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada.
  • Nguyen T; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Birlea M; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Wong J; Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada.
  • Daoust F; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Roy N; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Kougioumoutzakis A; Université de Montréal, Department of Pathology and Cellular Biology, Montreal, Quebec, Canada.
  • Azzi F; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Aubertin K; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Kadoury S; Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada.
  • Latour M; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Albadine R; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Prendeville S; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Boutros P; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Fraser M; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Bristow RG; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • van der Kwast T; Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada.
  • Orain M; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Brisson H; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Benzerdjeb N; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Hovington H; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Bergeron A; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Fradet Y; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Têtu B; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Saad F; Institut du cancer de Montréal, Montreal, Quebec, Canada.
  • Trudel D; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.
  • Leblond F; Institut du cancer de Montréal, Montreal, Quebec, Canada.
J Biomed Opt ; 26(11)2021 11.
Article in En | MEDLINE | ID: mdl-34743445
SIGNIFICANCE: Prostate cancer is the most common cancer among men. An accurate diagnosis of its severity at detection plays a major role in improving their survival. Recently, machine learning models using biomarkers identified from Raman micro-spectroscopy discriminated intraductal carcinoma of the prostate (IDC-P) from cancer tissue with a ≥85 % detection accuracy and differentiated high-grade prostatic intraepithelial neoplasia (HGPIN) from IDC-P with a ≥97.8 % accuracy. AIM: To improve the classification performance of machine learning models identifying different types of prostate cancer tissue using a new dimensional reduction technique. APPROACH: A radial basis function (RBF) kernel support vector machine (SVM) model was trained on Raman spectra of prostate tissue from a 272-patient cohort (Centre hospitalier de l'Université de Montréal, CHUM) and tested on two independent cohorts of 76 patients [University Health Network (UHN)] and 135 patients (Centre hospitalier universitaire de Québec-Université Laval, CHUQc-UL). Two types of engineered features were used. Individual intensity features, i.e., Raman signal intensity measured at particular wavelengths and novel Raman spectra fitted peak features consisting of peak heights and widths. RESULTS: Combining engineered features improved classification performance for the three aforementioned classification tasks. The improvements for IDC-P/cancer classification for the UHN and CHUQc-UL testing sets in accuracy, sensitivity, specificity, and area under the curve (AUC) are (numbers in parenthesis are associated with the CHUQc-UL testing set): +4 % (+8 % ), +7 % (+9 % ), +2 % (6%), +9 (+9) with respect to the current best models. Discrimination between HGPIN and IDC-P was also improved in both testing cohorts: +2.2 % (+1.7 % ), +4.5 % (+3.6 % ), +0 % (+0 % ), +2.3 (+0). While no global improvements were obtained for the normal versus cancer classification task [+0 % (-2 % ), +0 % (-3 % ), +2 % (-2 % ), +4 (+3)], the AUC was improved in both testing sets. CONCLUSIONS: Combining individual intensity features and novel Raman fitted peak features, improved the classification performance on two independent and multicenter testing sets in comparison to using only individual intensity features.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostatic Neoplasms / Carcinoma, Intraductal, Noninfiltrating Type of study: Clinical_trials / Diagnostic_studies / Prognostic_studies Limits: Humans / Male Language: En Journal: J Biomed Opt Journal subject: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Year: 2021 Type: Article Affiliation country: Canada

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Prostatic Neoplasms / Carcinoma, Intraductal, Noninfiltrating Type of study: Clinical_trials / Diagnostic_studies / Prognostic_studies Limits: Humans / Male Language: En Journal: J Biomed Opt Journal subject: ENGENHARIA BIOMEDICA / OFTALMOLOGIA Year: 2021 Type: Article Affiliation country: Canada