LncRNA BBOX1-AS1 promotes pituitary adenoma progression via sponging miR-361-3p/E2F1 axis.
Anticancer Drugs
; 33(7): 652-662, 2022 08 01.
Article
in En
| MEDLINE
| ID: mdl-35324526
Pituitary adenoma is one of the most common intracranial tumors, more and more studies have shown that long non-coding RNA (lncRNA) plays a very important role in pituitary adenoma. However, there are few reports on the function of lncRNA BBOX1-AS1 in pituitary adenomas, and further exploration is needed. The objective of this research is to figure out what function BBOX1-AS1 plays in pituitary adenoma and how it regulates it. The expression of the E2F1, miR-361-3p and BOX1-AS1 genes was measured using a quantitative real-time PCR method. The functional involvement of BBOX1-AS1 in pituitary adenoma was examined utilizing the Transwell assay, western blot assays and the cell counting kit-8. RNA immunoprecipitation and luciferase reporter assays revealed that miR-361-3p binds to E2F1 or BBOX1-AS1. In addition, in-vivo assays were carried out. The expression of BBOX1-AS1 in pituitary adenoma tissues and cells has been increased, according to our findings. Furthermore, it is also noted that downregulation of BBOX1-AS1causes the inhibition of pituitary adenoma cells which result in invasion, apoptosis and proliferation, as well as boosting tumor development in vivo . In addition, BBOX1-AS1 knockdown inhibited tumor development in vivo . We identify BBOX1-AS1 bind to miR-361-3p and to suppress its expression in a negative way. Moreover, miR-361-3p has been shown to bind with E2F1 and inhibit its expression. E2F1 also corrected miR-361-3p-mediated cell invasion, proliferation and apoptosis in BBOX1-AS1-dysregulated pituitary adenoma cells in rescue tests. BBOX1-AS1 increases pituitary adenoma malignant activity by sponging miR-361-3p to upregulate E2F1 expression, which may lead to a new path in pituitary adenoma therapeutic attempts.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Pituitary Neoplasms
/
MicroRNAs
/
RNA, Long Noncoding
Limits:
Humans
Language:
En
Journal:
Anticancer Drugs
Journal subject:
ANTINEOPLASICOS
Year:
2022
Type:
Article