Your browser doesn't support javascript.
loading
Inflammasome sensor NLRP1 disease variant M1184V promotes autoproteolysis and DPP9 complex formation by stabilizing the FIIND domain.
Moecking, Jonas; Laohamonthonkul, Pawat; Mese, Kubilay; Hagelueken, Gregor; Steiner, Annemarie; Harapas, Cassandra R; Sandow, Jarrod J; Graves, Jonathan D; Masters, Seth L; Geyer, Matthias.
Affiliation
  • Moecking J; Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany.
  • Laohamonthonkul P; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
  • Mese K; Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany.
  • Hagelueken G; Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany.
  • Steiner A; Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
  • Harapas CR; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
  • Sandow JJ; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
  • Graves JD; IFM Therapeutics, Boston, Massachusetts, USA.
  • Masters SL; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
  • Geyer M; Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany. Electronic address: matthias.geyer@uni-bonn.de.
J Biol Chem ; 298(12): 102645, 2022 12.
Article in En | MEDLINE | ID: mdl-36309085
ABSTRACT
The inflammasome sensor NLRP1 (nucleotide-binding oligomerization domain-like receptor containing a pyrin domain 1) detects a variety of pathogen-derived molecular patterns to induce an inflammatory immune response by triggering pyroptosis and cytokine release. A number of mutations and polymorphisms of NLRP1 are known to cause autoinflammatory diseases, the functional characterization of which contributes to a better understanding of NLRP1 regulation. Here, we assessed the effect of the common NLRP1 variant M1184V, associated with asthma, inflammatory bowel disease, and diabetes, on the protein level. Our size-exclusion chromatography experiments show that M1184V stabilizes the "function-to-find" domain (FIIND) in a monomeric conformation. This effect is independent of autoproteolysis. In addition, molecular dynamics simulations reveal that the methionine residue increases flexibility within the ZU5 domain, whereas valine decreases flexibility, potentially indirectly stabilizing the catalytic triad responsible for autocleavage. By keeping the FIIND domain monomeric, formation of a multimer of full-length NLRP1 is promoted. We found that the stabilizing effect of the valine further leads to improved dipeptidyl peptidase 9 (DPP9)-binding capacities for the FIIND domain as well as the full-length protein as determined by surface plasmon resonance. Moreover, our immunoprecipitation experiments confirmed increased DPP9 binding for the M1184V protein in cells, consistent with improved formation of an autoinhibited complex with DPP9 in activity assays. Collectively, our study establishes a molecular rationale for the dichotomous involvement of the NLRP1 variant M1184V in autoimmune syndromes.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Autoimmune Diseases / Dipeptidyl-Peptidases and Tripeptidyl-Peptidases / Inflammasomes / NLR Proteins Limits: Humans Language: En Journal: J Biol Chem Year: 2022 Type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Autoimmune Diseases / Dipeptidyl-Peptidases and Tripeptidyl-Peptidases / Inflammasomes / NLR Proteins Limits: Humans Language: En Journal: J Biol Chem Year: 2022 Type: Article Affiliation country: Germany